Answer:

Step-by-step explanation:


- In order to combine these two equations, an idea you need to keep in mind is finding a way of setting these equations as equal to each other. I saw that each equation shared a common value,
. In this case, we need to isolate
in the first equation so that both equations
.



- With this, we now know that both
and
are equal to
, so we can set them equal to each other.



- Reply to this if anything I'm saying or doing is confusing in any way, or if you find a mistake. :) Solve for
.







- Hopefully this answer is correct AND makes sense in terms of how I achieved it. Again, reply to this with any questions or mistakes I made and I'll do my best to answer or fix them.
1 over 3 should be the answer I think
Answer:
The option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Therefore
Step-by-step explanation:
Given expression is ((2 Superscript negative 2 Baseline) (3 Superscript 4 Baseline)) Superscript negative 3 Baseline times ((2 Superscript negative 3 Baseline) (3 squared)) squared
The given expression can be written as
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
To find the simplified form of the given expression :
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
( using the property
)
( using the property 
( combining the like powers )
( using the property
)

( using the property
)
Therefore
Therefore option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Answer:
Addition property of equality
Step-by-step explanation:
3/4 was added to each side