Answer:

Step-by-step explanation:

 
        
             
        
        
        
<u>Answer-</u>

<u>Solution-</u>
From the attachment,
AD = AE, so FA is a median.
BD = BF, so BE is a median.
CF = CE, so DC is a median.
And G is the centroid.
From the properties of centroid, we know that
The centroid divides each median in a ratio of 2:1
So,







So, GB will be  units
 units
 
        
                    
             
        
        
        
They would be alternate exterior so they would have to to be equal 
2k + 11 = 131
 -11 -11
 2k = 120
 ---- -----
 2k 2k
 k = 60
        
                    
             
        
        
        
If the lines are parallel, they have no solutions because they never touch
        
                    
             
        
        
        
Answer:
D. There were no significant effects.
Step-by-step explanation:
The table below shows the representation of the significance level using the two-way between subjects ANOVA.
Source of Variation            SS          df          MS          F                P-value
Factor A                             10          1              10           0.21           0.660
Factor B                             50         2             25          0.52          0.6235  
       
A × B                                  40          2             20         0.42           0.6783
Error                                   240        5             48           -               -
Total                                   340       10             -             -                  - 
From the table above , the SS(B) is determined as follows:
SS(B) = SS(Total)-SS(Error-(A×B)-A)
          =  340-(240-40-10)
          = 50
A researcher computes the following 2 x 3 between-subjects ANOVA;
k=2
n=3
N(total) = no of participants observed in each group =11
df for Factor A= (k-1)
=(2-1)
=1
df for Factor B = (n-1)
=(3-1)
=2
df for A × B     
  = 2 × 1
  = 2
df  factor for total
=(N-1)
=11-1
=10
 
MS = SS/df
Thus, from the table, the P-Value for all data is greater than 0.05, therefore we fail to reject H₀.