The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
The word quark <span>originally appeared in a single line of the the novel Finnegans Wake written by the Irish author </span>James Joyce<span> (1882–1941). The protagonist of the book is a publican named Humphrey Chimpden Earwicker who dreams that he is serving beer to a drunken seagull</span>
This question is personal preference... just answer with whatever YOU think, there probably isn’t s wrong answer if I’d guess.
They are formed when two plates collide, either crumpling up and forming mountains or pushing one of the plates under the other and back into the mantle to melt. Convergent boundaries form strong earthquakes, as well as volcanic mountains or islands, when the sinking oceanic plate melts.
Answer:
a) Vi = 137.2 m/s
b) h = 960.4 m
Explanation:
a)
In order to find the initial speed we will use first equation of motion:
Vf = Vi + gt
where,
Vf = Final velocity = 0 m/s (since ball stops at highest point)
Vi = Initial Velocity = ?
g = - 9.8 m/s² (negative sign for upward moyion)
t = time interval = 14 s
Therefore,
0 m/s = Vi + (-9.8 m/s²)(14 s)
<u>Vi = 137.2 m/s</u>
<u></u>
b)
Now, we use second equation of motion to find height (h):
h = Vi t + (1/2)gt²
h = (137.2 m/s)(14 s) + (1/2)(-9.8 m/s²)(14 s)²
h = 1920.8 m - 960.4 m
<u>h = 960.4 m</u>