Diffuse reflection have a great day
Answer:
k_max = 31.82 w/mk
k_min = 17.70 w/mk
Explanation:
a) the maximum thermal conductivity is given as

where k_m is thermal conductvitiy of metal
k_p is thermal conductvitiy of carbide
v_m = proportion of metal in the cement = 0.17
v_p = proportion of carbide in the cement = 0.83
= 66*0.17 + 28*0.83
k_max = 31.82 w/mk
b) the minimum thermal conductivity is given as

= \frac{28+66}{28*0.17 +66*0.83}
k_min = 17.70 w/mk
Answer:
It would be a straight line
Explanation:
On a distance-time graph, an object that moves at constant speed would be represented by a straight line.
In fact, in a distance-time graph, the slope of the line corresponds to the speed of the object. We can demonstrate that. In fact:
- The speed of the object is equal to the ratio between the distance covered
and the time taken (
):

On a distance-time graph, the distance is on the y-axis while the time is on the x-axis. The slope of the line is defined as:

But the variation on the y-axis (
) is equal to the distance covered (
), while the variation on the x-axis
corresponds to the time taken (
), so the slope can also be rewritten as

which is equal to the speed of the object. Therefore, an object moving at constant speed would be represented by a line with constant slope, which means a straight line.
Answer:
Straight line in a transverse wave represents the mean position of oscillating energy parameter at which the instantaneous amplitude is zero.
Explanation:
- A transverse wave is one in which the direction of propagation is perpendicular to the direction of oscillating energy vector.
- The transverse wave having a horizontal straight line represents the line of zero amplitude of oscillation.
- <em>When in graphical representation the curve intercepts this horizontal line then the amplitude of the oscillation and the phase of the wave becomes whole number multiple of 2π and as we know that the periodic oscillations are represented as a sinusoidal function which leads the amplitude to zero.</em>
<em />