Answer:
The mass of the 500 series bullet train is 181.4 tonnes.
Explanation:
The momentum is given by:

Where:
m: is the mass =?
v: is the velocity = 261.8 km/h
p: is the momentum = 13194098.64 kg*m/s
By solving the above equation for "m" we have:

Therefore, the mass of the 500 series bullet train is 181.4 tonnes.
I hope it helps you!
Answer:
★The second law of refraction
The ratio of sine of angle of incidence to the sine of angle of refraction is a constant for a light of given colour and for a given pair of media. This law is also called Snell's law of refraction. If 'i' is the angle of incidence and 'r' is the angle of refraction then, Sin i/Sin r = constant
This constant value is called the refractive index of the second medium with respect to the first.
F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.
Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants (
= 0) zero, so let's use the equation
y =
t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
=
- gt
= 0 - g √2y/g
= - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch