Answer:
The average mass of the inner planets is = 2.9531925 x 1024 kg.
Answer:
10(3)^x
Step-by-step explanation:
The function contains the points (2,90) and (4,810). Use the general form y=abx to write two equations:
90=ab^2 and 810=ab^4
Solve each equation for a:
a=90/b^2 and a=810/b^4
Since a=a, set the other sides of the equations equal and solve for b.
90/b2=810/b4
Cross multiply, then divide and simplify as follows:
90b^4=810b^2
b^4/b^2=810/90
b^2=90
b^3
Now, use the value of b and the point (2,90) to find the value of a.
90=a(3^2)
a=10
So, substitute answers in original equation for a final answer of f(x)=10(3)^x.
B. 25 Km. The measure of BC is 25 km.
The easiest way to solve this problem is using the cosine theorem c = √a²+b²-2ab*cos A.
BC = √AC²+AB²-2(AC)(AB)*cos A
BC = √(21km)²+(14km)²-2(21km)(14km)*cos 89°
BC = √441km²+196km²-588km²*(0.017)
BC =√637km²-10.26km²
BC = √636.74km²
BC = 25.03km ≅ 25