Enthalpy is a state function
Explanation:
The Hess's law allows us to determine the enthalpy change of a reaction because enthalpy is a state function. It does not depend on the individual path take in going from reactants to products in the reaction.
- Enthalpy changes are the heat changes accompanying physical and chemical changes.
- It is the difference between the heat content of product in the final state and the reactants.
- Enthalpy changes for some reactions are not easily measurable experimentally.
- To calculate such heat changes, we apply the Hess's law of heat summation.
- The law states that "the heat change of a reaction is the same whether it occurs in a step or several steps".
- The Hess's law is simply based on the first law of thermodynamics by which we know that energy is conserved in every system.
learn more:
Hess's law brainly.com/question/11293201
#learnwithBrainly
ANSWER

EXPLANATION
Given that;
The two reactants are KBr and CaO
Double replacement reaction is a type of chemical reaction that occur when two reactants exchange cations and anions to yield new products.

Therefore, the resulting products of the given data are K2O + CaBr2
The correct answer is option B
Answer: 0.00867 moldm-3
Explanation:
Since the reaction is 1st order,
Rate of reaction=∆[A]÷t
0.646-0.0146/72.8= 0.00867
Remember that in a first order reaction, the rate of reaction depends on change in the concentration of only one of the reaction species, A in the problem above.
It would get really hot and probably cause multiple chemical reactions