The best way to accurately determine the pair with the highest electronegativity difference is by using their corresponding electronegativity values. For the each of the choices, the difference is:
A. H-S = 2.5 - 2.1 = 0.4
B. H-Cl = 3 - 2.1 = 0.9
C. N-H = 3 - 2.1 = 0.9
D. O-H = 3.5 - 2.1 = 1.4
E. C-H = 2.5 - 2.1 = 0.4
As show, D. has the highest difference. Without looking at their values, you can also determine the pair with the highest difference by taking note of the trend of electronegativity on the periodic table. Electronegativity increases as you go right a group and up a period. This makes oxygen the most electronegative element among the other elements paired with hydrogen.
Answer:
VC = 18
Explanation:
Since L is the midpoint and you have LV, you know that LC is also 9.
Answer:
First one is 5.0 M ammonia and the Second one ?
Explanation:
Exothermic reactions<span> are chemical </span>reactions<span> that release energy. Example: Burning a candle is an example of an </span>exothermic reaction<span> because energy is being released during the </span>reaction<span> in the form of heat. </span>Endothermic reactions<span> are chemical </span>reactions<span> that absorb energy.</span>
Explanation:
As it is given that both the given containers are at same temperature and pressure, therefore they have the same density.
So, mass of
in container- 1 is as follows.
5.35 mol x molar mass of 
= 7.61 mol x 146.06 g/mol
= 1111.52 g
Therefore, density of
will be calculated as follows.
Density =
density =
= 0.532 g/mL
Now, mass of
in container- 2 is calculated as follows.
4.46 L x 1000 mL/L x 0.532 g/mL
= 2372.72 g
Hence, calculate the moles of moles
present in container 2 as follows.
No. of moles =
=
= 16.24 mol
Since, 1 mol
contains 6 moles F atoms
.
So, 16.24 mol
contains following number of atoms.
=
= 97.46 mol
Thus, we can conclude that moles of F atoms in container 2 are 97.46 mol.