1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
3 years ago
6

Conrad drew 2 angles. Three times the measure of angle 1 is 30° more than 5 times the measure of angle 2. The sum of twice the m

easure of angle 1 and twice the measure of angle 2 is 180°. Find the measure of each angle.
Mathematics
1 answer:
ad-work [718]3 years ago
3 0
Let x= measure of angle 1
Let y= measure of angle 2

This is solving a system of equations

3x=30+ 5y which can also be written

3x-5y=30, and

2x+2y=180
There are a few ways to solve this, like solving for x in one of the equations and plugging it in for x in the other equation, but here is another way:
2(3x-5y)=2*30
3(2x+2y)= 3*180

6x-10y=60
6x+6y=540, and now subtract to get rid of x
0-16y=-480
Y=30
Plug it back in to either equation and you get x=60

You might be interested in
Simplify (1/2 pt each)<br><br> -2^3=<br><br> 8^2=<br><br> 9^-1=<br><br> (-4)^-2=<br><br> HELPP PLSSS
bixtya [17]

Answer:

-2³ = -8

8² = 64

9^-1 = 1/9

(-4)^-2 = 1/16

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
A triangle has an area of 36 cm². The base and height are scaled by a factor of 5.
stepan [7]

Answer:

Step-by-step explanation:

0.5bh = 36

0.5(5b)(5h) = 25(0.5bh) = 25 × 36 = 900 sq cm

6 0
3 years ago
Find the roots of h(t) = (139kt)^2 − 69t + 80
Sonbull [250]

Answer:

The positive value of k will result in exactly one real root is approximately 0.028.

Step-by-step explanation:

Let h(t) = 19321\cdot k^{2}\cdot t^{2}-69\cdot t +80, roots are those values of t so that h(t) = 0. That is:

19321\cdot k^{2}\cdot t^{2}-69\cdot t + 80=0 (1)

Roots are determined analytically by the Quadratic Formula:

t = \frac{69\pm \sqrt{4761-6182720\cdot k^{2} }}{38642}

t = \frac{69}{38642} \pm \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321}  }

The smaller root is t = \frac{69}{38642} - \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321}  }, and the larger root is t = \frac{69}{38642} + \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321}  }.

h(t) = 19321\cdot k^{2}\cdot t^{2}-69\cdot t +80 has one real root when \frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321} = 0. Then, we solve the discriminant for k:

\frac{80\cdot k^{2}}{19321} = \frac{4761}{1493204164}

k \approx \pm 0.028

The positive value of k will result in exactly one real root is approximately 0.028.

7 0
2 years ago
Choose the graph that solve the following system x-4y=2 3x+2y=6
Elanso [62]
X - 4y = 2.....multiply by -3
3x + 2y = 6
-------------
-3x + 12y = -6 (result of multiplying by -3)
3x + 2y = 6
------------add
14y = 0
y = 0

3x + 2y = 6
3x + 2(0) = 6
3x = 6
x = 6/3
x = 2

solution is (2,0).....so the graph that has the two lines intersecting (crossing) at (2,0) is gonna be ur graph
5 0
3 years ago
Simplify the expression 7(3+2p+7).
ipn [44]

Answer: 14p +70

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • BRAINLIEST AND WORTH 10 POINTS!
    11·1 answer
  • A science test, which is worth 100 points, consists of 24 questions. Each question is worth either 3 points or 5 points. If x is
    12·2 answers
  • Verify that quadrilateral BCDE is a rhombus with vertices B(-5, 1), C(0, 6), D(5, 1) and E (0, -4) by showing that all four side
    10·1 answer
  • Given j || k and m&lt;8 = 150•<br> What is m&lt;3?<br> Enter your answer in the box.<br> M&lt;3=
    12·1 answer
  • 8/3 + 1/2 - 2/3 / 8/9 x 3/4
    11·2 answers
  • 36= W/4 what does w equal ???????????///
    10·2 answers
  • The number of birds this year in the city of L.A. has increased by 15%. Last year there were 405,000 birds. How many birds are t
    7·1 answer
  • Which student drew the best trend line?? Why?
    10·1 answer
  • TRUE OR FALSE
    15·2 answers
  • Question 3 of 15
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!