Hi there! the best way of solving this is picturing out what the graph might look like. Let's assume you had the graph of a parabola y=x^2. You know that for every x you substitute, there'd always be a value for y. Thus, the domain is ALL REAL NUMBERS or from -INFINITY to + INFINITY. The range on the other hand is different. We know that any number raised to the second power will always yield a positive integer or 0. Thus, y=x^2 won't have any negative y-values as the graph opens upward. Therefore, the range is: ALL REAL NUMBERS GREATER THAN OR EQUAL TO 0. or simply: 0 to +INFINITY. 
<span>On the other hand, a cubic function y=x^3 is quite different from the parabola. For any x that we plug in to the function, we'd always get a value for y, thus there are no restrictions. And the domain is ALL REAL NUMBERS or from -INFINITY to + INFINITY. For the y-values, the case would be quite similar but different to that of the y=x^2. Since a negative number raised to the third power gives us negative values, then the graph would cover positive and negative values for y. Thus, the range is ALL REAL NUMBERS or from -INFINITY to + INFINITY. Good luck!!!:D</span>
        
                    
             
        
        
        
27/54 is equivalent to, assuming you want to simplify
27/54=1/2  
 
you divide top and bottom of the fraction by 27
because 27*2=54 
        
             
        
        
        
Answer:
The first step in solving 83.5 ÷ 6.25  is to multiply the divisor and dividend by  
[✔ 100
]
sorry idk the answer for the second one :(
Step-by-step explanation:
 
        
             
        
        
        
Answer:
72
Step-by-step explanation:
180/2.5
= 72
 
        
             
        
        
        
Usando la división de términos con la <u>misma base y diferentes exponentes</u>, se encuentra que la expresión simplificada está dada por:

<h3>¿Cómo dividir términos con la misma base y diferentes exponentes?</h3><h3 />
Para hacer la división, mantenemos la base y restamos los exponentes.
En este problema, la división es dada por:

Por lo tanto, el resultado es:

Como tanto el numerador como el denominador son negativos, la división es positiva.
Puede-se aprender más a cerca de la división de términos con la <u>misma base y diferentes exponentes</u> en brainly.com/question/15722035
#SPJ1