Answer:
a) P(x<5)=0.
b) E(X)=15.
c) P(8<x<13)=0.3.
d) P=0.216.
e) P=1.
Step-by-step explanation:
We have the function:

a) We calculate the probability that you need less than 5 minutes to get up:

Therefore, the probability is P(x<5)=0.
b) It takes us between 10 and 20 minutes to get up. The expected value is to get up in 15 minutes.
E(X)=15.
c) We calculate the probability that you will need between 8 and 13 minutes:
![P(8\leq x\leq 13)=P(10\leqx\leq 13)\\\\P(8\leq x\leq 13)=\int_{10}^{13} f(x)\, dx\\\\P(8\leq x\leq 13)=\int_{10}^{13} \frac{1}{10} \, dx\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot [x]_{10}^{13}\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot (13-10)\\\\P(8\leq x\leq 13)=\frac{3}{10}\\\\P(8\leq x\leq 13)=0.3](https://tex.z-dn.net/?f=P%288%5Cleq%20x%5Cleq%2013%29%3DP%2810%5Cleqx%5Cleq%2013%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%5Bx%5D_%7B10%7D%5E%7B13%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%2813-10%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B3%7D%7B10%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D0.3)
Therefore, the probability is P(8<x<13)=0.3.
d) We calculate the probability that you will be late to each of the 9:30am classes next week:
![P(x>14)=\int_{14}^{20} f(x)\, dx\\\\P(x>14)=\int_{14}^{20} \frac{1}{10} \, dx\\\\P(x>14)=\frac{1}{10} [x]_{14}^{20}\\\\P(x>14)=\frac{6}{10}\\\\P(x>14)=0.6](https://tex.z-dn.net/?f=P%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B14%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B6%7D%7B10%7D%5C%5C%5C%5CP%28x%3E14%29%3D0.6)
You have 9:30am classes three times a week. So, we get:

Therefore, the probability is P=0.216.
e) We calculate the probability that you are late to at least one 9am class next week:
![P(x>9.5)=\int_{10}^{20} f(x)\, dx\\\\P(x>9.5)=\int_{10}^{20} \frac{1}{10} \, dx\\\\P(x>9.5)=\frac{1}{10} [x]_{10}^{20}\\\\P(x>9.5)=1](https://tex.z-dn.net/?f=P%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B10%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E9.5%29%3D1)
Therefore, the probability is P=1.
I hope this helps you
Volume =pi.r^2.h
Volume =3,14.8^2.10
Volume =31,4.64
Volume =200,96
Answer:
4. slices
Step-by-step explanation:
because If you turn 3/5 in to a decimal you get 0.6 and each slice of cheese weighs 0.15 so you do 0.6 divided by 0.15
Answer:
It's the second one I believe, because it's not a straight line, and nearly all functions have curved lines
Step-by-step explanation:
Using the normal distribution, the area underneath the shaded region <u>between the two z-scores</u> is given by:
C. 0.6766.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
Hence, for this problem, the area is the <u>p-value of z = 0.75 subtracted by the p-value of z = -1.3</u>.
Looking at the z-table, the p-values are given as follows:
Then:
0.7734 - 0.0968 = 0.6766.
Which means that option C is correct.
More can be learned about the normal distribution at brainly.com/question/15181104
#SPJ1