So we are given the system:

Written in matrix form we get:
![\left[\begin{array}{cc}2&4\\6&3\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}8\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20)
We compute the solution like this:
![ \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{cc}2&4\\6&3\end{array}\right] ^{-1} \left[\begin{array}{c}8\\-3\end{array}\right] \\= \left[\begin{array}{cc}-3&4\\6&-2\end{array}\right] \left[\begin{array}{c}8\\-3\end{array}\right] \dfrac{1}{18}\\= \left[\begin{array}{c}2\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%5E%7B-1%7D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3%264%5C%5C6%26-2%5Cend%7Barray%7D%5Cright%5D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%5Cdfrac%7B1%7D%7B18%7D%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)
The solution is :
Answer:
an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).
Answer: 601
200
Step-by-step explanation: when you reduce 3.005 it is 601/200 and it is in its simpilist form
Answer:
C
Step-by-step explanation:
from the table shown
increases linearly: in a straight or nearly straight line.