B is the answer I think better sure
Its hybridization would be sp because Be only has 2 covalent bonds with Cl
Answer:
(a)
(b)
(c)
(d)
(e)
Explanation:
To calculate de pH of an acid solution the formula is:
were [H^{+}] is the concentration of protons of the solution. Therefore it is necessary to know the concentration of the protons for every solution in order to solve the problem.
(a) and (c) are strong acids so they dissociate completely in aqueous solution. Thus, the concentration of the acid is the same as the protons.
(b) and (e) are strong bases so they dissociate completely in aqueous solution too. Thus, the concentration of the base is the same as the oxydriles. But in this case it is necessary to consider the water autoionization to calculate the protons concentration:
clearing the
(d) is a weak base so it is necessary to solve the equilibrium first, knowing
The reaction is → so the equilibrium is
clearing the <em>x</em>
Answer:
91.4°C
Explanation:
Gay - Lussac Law => T ∝ P => T = kP => k = T/P with volume (V) and mass (n) constant.
For two different Temperature (T)-Pressure (P) conditions
k₁ = k₂ => T₁/P₁ = T₂/P₂ => T₂ = T₁(P₂/P₁)
T₁ = 55°C = (55 + 273)K = 328K
P₁ = 965 mmHg
T₂ = ?
P₂ = 850 mmHg
T₂ = T₁(P₂/P₁) = 328K(850 mmHg/965 mmHg) = 364K = (364 - 273)°C = 91.4°C