When the reaction equation is:
HF ↔ H+ + F-
and when the Ka expression
= concentration of products/concentration of reactions
so, Ka = [H+][F-]/[HF]
when we assume:
[H+] = [F-] = X
and [HF] = 0.35 - X
So, by substitution:
6.8 x 10^-4 = X^2 / (0.35 - X) by solving for X
∴ X = 0.015 M
∴[H+] = X = 0.015
when PH = -㏒[H+]
∴PH = -㏒0.015
= 1.8
Answer:
2 atoms
Explanation:
1 sodium atom + 1 chlorine atom = 2 atoms
<span>What is the maximum number of electrons in the following energy level? n = 2
2
</span>
Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
The water molecules will flow from b to a due to osmosis.
Osmosis is where water molecules will flow from a region of higher water potential to a region of lower water potential, through a selectively permeable membrane.
When the water molecule concentration is higher, it has a higher water potential top. Water potential is the tendency for them to flow to a lower region.
The net movement will stop until both sides of the solution has a same water potential.