Answer:
hope this helps
Explanation:
The atoms of hydrogen have smaller mass than oxygen. Thus their speeds have to higher in order to produce the same average kinetic energies.
The typically bald, rocky, or sandy surfaces in desert climates hold little moisture and evaporate the little rainfall they receive.
<span>Moles = 0.252
Molarity = 1.07
This question is badly worded. You're asking for moles and I suspect you really want molarity. The number of moles of ammonium chloride you have in the solution will remain constant regardless of the volume of the solution. However, the molarity of the solution will differ depending upon how concentrated it is. So I'll give you both the number of moles of ammonium chloride you have, and the molarity of the resulting solution. Please talk to your teacher if you're confused by the difference between moles and molarity.
The formula for ammonium chloride is NH4Cl. So let's calculate it's molar mass. Start by looking up the associated atomic weights.
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Atomic weight chlorine = 35.453
Molar mass NH4Cl = 14.0067 + 4 * 1.00794 + 35.453 = 53.49146 g/mol
Moles NH4Cl = 13.5 g / 53.49146 g/mol = 0.252376735 mol
Molarity is defined as moles per liter, so let's divide the number of moles we have by the volume in liters. So:
0.252376735 mol / 0.235 l = 1.073943551 M
Rounding to 3 significant figures gives: 0.252 moles, 1.07 molarity.</span>
With standard pressure there is a set list of values. (at STP), most common is 760torr. So whenever you see "at STP" or "at standard temperature pressure" you will use 760torr for pressure. Same thing goes with temperature, if you're not given temp and it says at STP you will use 273K.
For this problem:
You will be using the combined gas law:
(Pressure 1) x (Volume 1) / (Temp. 1) = (Pressure 2) x (Volume 2) / (Temp. 2)
(760torr) x (5.63L) / (287K) = (?) (9.21L) / (287K)
Pressure 2 = 465torr
*Hope this clarifies STP for you! :)
The correct match are as follows:
Boyles Law is about a gas at constant temperature. Therefore, the correct match would be the volume of a gas varies inversely with pressure if the temperature is kept constant.
Charles Law would be that the volume of a gas varies directly with temperature if the pressure is kept constant.
Gay-lussac's law would be that the pressure of a gas varies directly with temperature if the volume is kept constant.