Answer:
68%
Step-by-step explanation:
The increase is (62 - 37), or 25, ounces. Comparing this to the original quantity (37 oz), we divide 25 oz. by 37 oz., obtaining 0.676 (a ratio). Multiplying this ratio by 100%, we get 68% (to the nearest percent).
Answer:

Step-by-step explanation:
Using the change of base rule for logarithms
x =
( where c is the new base )
Given
log 17 , that is
17 , then
17 = 
The general form of such an equation is
x^2 + y^2 = r^2 where r = radius
In this case r^2 = 4^2 + 5^2 = 41
So the required equation is x^2 ^ y^2 = 41
B
The correct question is:
Suppose x = c1e^(-t) + c2e^(3t) a solution to x''- 2x - 3x = 0 by substituting it into the differential equation. (Enter the terms in the order given. Enter c1 as c1 and c2 as c2.)
Answer:
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
Step-by-step explanation:
We need to verify that
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
We differentiate
x = c1e^(-t) + c2e^(3t)
twice in succession, and substitute the values of x, x', and x'' into the differential equation
x''- 2x' - 3x = 0
and see if it is satisfied.
Let us do that.
x = c1e^(-t) + c2e^(3t)
x' = -c1e^(-t) + 3c2e^(3t)
x'' = c1e^(-t) + 9c2e^(3t)
Now,
x''- 2x' - 3x = [c1e^(-t) + 9c2e^(3t)] - 2[-c1e^(-t) + 3c2e^(3t)] - 3[c1e^(-t) + c2e^(3t)]
= (1 + 2 - 3)c1e^(-t) + (9 - 6 - 3)c2e^(3t)
= 0
Therefore, the differential equation is satisfied, and hence, x is a solution.
Answer:
-8,-7
Step-by-step explanation:
I think