1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
4 years ago
7

What are the zeros of the quadratic function shown on the graph?

Mathematics
2 answers:
emmainna [20.7K]4 years ago
8 0
B correct answers are -3 and 2
worty [1.4K]4 years ago
7 0
Zeroes are places on the graph where the graph intersects or touches the x-axis or where y = 0.

The graph touches the x-axis at points (-3, 0) and (2, 0), therefore, the correct answer is B.
You might be interested in
What is the slope of this line?
Sloan [31]
The slope of the line is -1
4 0
3 years ago
Read 2 more answers
Keisha is having a birthday party. Her mom gave her $30 to purchase items for the party. She brought 16 party hats and 16 bags.
ludmilkaskok [199]
Keisha has $13.2 leftover
3 0
3 years ago
Dave bought some fresh produce. He picked up 2 oranges, and 3 bananas. The cost of the Dave's shopping was $9.16.
Helga [31]

Answer:prices = {"banana": 4, "apple": 2, "orange": 1.5, "pear": 3}

stock = {"banana": 6, "apple": 0, "orange": 32, "pear": 15}

for item in prices:

   print item + ":"

   print "price: " + str(prices[item])

   print "stock: " + str(stock[item])

Step-by-step explanation:

prices = {"banana": 4, "apple": 2, "orange": 1.5, "pear": 3}

stock = {"banana": 6, "apple": 0, "orange": 32, "pear": 15}

for item in prices:

   print item + ":"

   print "price: " + str(prices[item])

   print "stock: " + str(stock[item])

3 0
3 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
Math Help? 15 Points
Helga [31]
A) Kara's fee for the second child is $5
5 0
4 years ago
Other questions:
  • Can you help me please
    6·1 answer
  • What is 181/92 as a mixed number
    10·2 answers
  • Which of the following expressions does not mean the same as the other three?
    14·1 answer
  • What are the zeros for the function
    14·1 answer
  • You roll a 6-sided die two times. What is the probability of rolling a number less than 3 and then rolling a number greater than
    7·1 answer
  • Okay, I’m having a hard time answering these problems. My math teacher explained it but I still just don’t understand. Can any o
    8·1 answer
  • How many solutions are there to the equation below?
    11·1 answer
  • A squirrel in a tree drops an acorn. how long does it take the acorn to fall 52 feet?
    6·1 answer
  • HELPP HELPPP PLEASEEE
    6·1 answer
  • Which number will be closest to 14? A. 13.4 B. 13 1\2 C. 13.08 D. 13 2\5​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!