<h2>Solution:.</h2>
Let the ceilings be <em>a</em><em> </em><em>&</em><em> </em><em>b</em>
and the distance from one corner of the ceiling to the opposite be <em>c</em>
<em>then </em><em>using</em><em> </em><em>Pythagoras</em><em> theorem</em>

hence ,c .°. the distance from one corner of the ceiling to the opposite is<em> </em><em>2</em><em>0</em>
Answer: proof below
<u>Step-by-step explanation:</u>
Use the Difference formula for sin:
sin (A - B) = sin(A)·cos(B) - cos(A)·sin(B)
sin (180° - θ) = sin(180°)·cos(θ) - cos(180°)·sin(θ)
= 0 · cos(θ) - -1 · sin(θ)
= 0 - -sin(θ)
= + sin(θ)
sin (180° - θ) = sin(θ) 
11: 4,874 > 4,784 > 4,687
12: 8.09 > 8.057 > 8.023
13: 15.820 > 15.280 > 15.000
14: 43,628 > 40,628 > 34,628
15: 395.050 > 395.009 > 395.005
Whole number can be a integer. rational number can not be a integer that is repeating.