You have the correct answer. It is choice A. Nice work.
I prefer using full circles because sometimes the arcs could be too small in measure to not go where you want them to. If you're worried about things getting too cluttered (a legitimate concern), then I recommend drawing everything in pencil and only doing the circles as faint lines you can erase later. Once the construction is complete, you would go over the stuff you want to keep with a darker pencil, pen or marker. You can also use the circle as a way to trace over an arc if needed.
Choice B is false as a full circle can be constructed with a compass. Simply rotate the compass a full 360 degrees. Any arc is a fractional portion of a circle.
Choice C is false for similar reasoning as choice B, and what I mentioned in the paragraph above.
Choice D contradicts choice A, so we can rule it out. Arcs are easier to draw since it takes less time/energy to rotate only a portion of 360 degrees. Also, as mentioned earlier, having many full circles tend to clutter things up.
Side of the playground would be : a²+a² = 16²
2a² = 256
a² = 128
a = √128
a = 11.31 m
Answer:
x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4
Step-by-step explanation:
Solve for x:
2 x^2 - 5 x + 5 = 0
Hint: | Using the quadratic formula, solve for x.
x = (5 ± sqrt((-5)^2 - 4×2×5))/(2×2) = (5 ± sqrt(25 - 40))/4 = (5 ± sqrt(-15))/4:
x = (5 + sqrt(-15))/4 or x = (5 - sqrt(-15))/4
Hint: | Express sqrt(-15) in terms of i.
sqrt(-15) = sqrt(-1) sqrt(15) = i sqrt(15):
Answer: x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4
Answer:
1) A line can be defined by two points that are connected by the given line.
We can see that the line r connects the points A and B, then we can call this line as:
AB (the notation usually uses a double arrow in top of the letters)
2) In the image we can see that lines r and s intersect at the point B, then another name for that intersection is: B.
3) 3 colinear points are 3 points that are connected by a single line, an example of this can be the points A, B and C.
4) A plane can be defined by a line and a point outside the line.
For example, we can choose the line AB and the point D, that does not belong to the line.
Then we can call the plane as ABD.
Hello! I believe the Surface Area to a rectangular prism= 2(4x5+5x7+4x7). Let me know if i'm wrong. Anyways hope this helps!