1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
14

A study of long-distance phone calls made from General Electric Corporate Headquarters in Fairfield, Connecticut, revealed the l

ength of the calls, in minutes, follows the normal probability distribution. The mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.
a. What fraction of the calls last between 4.50 and 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
b. What fraction of the calls last more than 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
c. What fraction of the calls last between 5.30 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
d. What fraction of the calls last between 4.00 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
e. As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 5 percent of the calls. What is this time? (Round z-score computation to 2 decimal places and your final answer to 2 decimal places.)
Mathematics
1 answer:
Katena32 [7]3 years ago
7 0

Answer:

(a) The fraction of the calls last between 4.50 and 5.30 minutes is 0.3729.

(b) The fraction of the calls last more than 5.30 minutes is 0.1271.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is 0.1109.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is 0.745.

(e) The time is 5.65 minutes.

Step-by-step explanation:

We are given that the mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.

Let X = <u><em>the length of the calls, in minutes.</em></u>

So, X ~ Normal(\mu=4.5,\sigma^{2} =0.70^{2})

The z-score probability distribution for the normal distribution is given by;

                           Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 4.5 minutes

           \sigma = standard deviation = 0.7 minutes

(a) The fraction of the calls last between 4.50 and 5.30 minutes is given by = P(4.50 min < X < 5.30 min) = P(X < 5.30 min) - P(X \leq 4.50 min)

    P(X < 5.30 min) = P( \frac{X-\mu}{\sigma} < \frac{5.30-4.5}{0.7} ) = P(Z < 1.14) = 0.8729

    P(X \leq 4.50 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.5-4.5}{0.7} ) = P(Z \leq 0) = 0.50

The above probability is calculated by looking at the value of x = 1.14 and x = 0 in the z table which has an area of 0.8729 and 0.50 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.8729 - 0.50 = <u>0.3729</u>.

(b) The fraction of the calls last more than 5.30 minutes is given by = P(X > 5.30 minutes)

    P(X > 5.30 min) = P( \frac{X-\mu}{\sigma} > \frac{5.30-4.5}{0.7} ) = P(Z > 1.14) = 1 - P(Z \leq 1.14)

                                                              = 1 - 0.8729 = <u>0.1271</u>

The above probability is calculated by looking at the value of x = 1.14 in the z table which has an area of 0.8729.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is given by = P(5.30 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 5.30 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 5.30 min) = P( \frac{X-\mu}{\sigma} \leq \frac{5.30-4.5}{0.7} ) = P(Z \leq 1.14) = 0.8729

The above probability is calculated by looking at the value of x = 2.14 and x = 1.14 in the z table which has an area of 0.9838 and 0.8729 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.8729 = <u>0.1109</u>.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is given by = P(4.00 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 4.00 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 4.00 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.0-4.5}{0.7} ) = P(Z \leq -0.71) = 1 - P(Z < 0.71)

                                                              = 1 - 0.7612 = 0.2388

The above probability is calculated by looking at the value of x = 2.14 and x = 0.71 in the z table which has an area of 0.9838 and 0.7612 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.2388 = <u>0.745</u>.

(e) We have to find the time that represents the length of the longest (in duration) 5 percent of the calls, that means;

            P(X > x) = 0.05            {where x is the required time}

            P( \frac{X-\mu}{\sigma} > \frac{x-4.5}{0.7} ) = 0.05

            P(Z > \frac{x-4.5}{0.7} ) = 0.05

Now, in the z table the critical value of x which represents the top 5% of the area is given as 1.645, that is;

                      \frac{x-4.5}{0.7}=1.645

                      {x-4.5}{}=1.645 \times 0.7

                       x = 4.5 + 1.15 = 5.65 minutes.

SO, the time is 5.65 minutes.

You might be interested in
A home seller wants to net $15,000. If he has agreed to pay a 5% commission, the loan payoff is $94,000 and closing costs are $1
NeX [460]

9514 1404 393

Answer:

  $131,600

Step-by-step explanation:

If the listing price is P, then the net is the difference between that and all of the various costs.

  P -(5%×P) -94,000 -16000 = 15,000

  0.95P = 125,000

  P ≈ 131,600 . . . . . . divide by 0.95

The minimum listing price must be $131,600.

4 0
3 years ago
Question 4.<br> Which percent is equivalent to 3/8?<br> A) 375%<br> B) 3.75%<br> C) 37.5%
amm1812
3/8 = 0,375
0,375 * 100% = 37,5 %
6 0
3 years ago
Find the value of x.<br> 3x<br> X + 10<br> Х<br> 2x<br> x = [?]°<br> Hint: Sum = (n-2)180<br> Enter
Svet_ta [14]

Answer: i’m confused

Step-by-step explanation:

7 0
2 years ago
The diameter of a round dinner plate is 10 inches. What's the area of the plate?
Anni [7]
Lets say pi is 3.14
The area of a circle is: pi*radius squared
The radius is half the diameter so it is 5 inches.
3.14*5 squared 2
3.14*25
78.5inches squared

3 0
3 years ago
Read 2 more answers
Answer is -66 but show the work of how you got that answer
Greeley [361]

Answer:

-66

Step-by-step explanation:

P(8) = -8^2 - 2

-64 -2 =  -66

6 0
2 years ago
Other questions:
  • Find the length of the arc shown in brown. Leave your answer in terms of pi.
    13·2 answers
  • Please help I am not understanding this question
    15·2 answers
  • Which system is equivalent to​
    10·2 answers
  • A student took a test which had 6 questions. He would score 8 points on the test if all his answers are correct. If y represents
    5·2 answers
  • (will give brainliest) find the value of x
    11·2 answers
  • Amaya used these steps to solve the equation 8x+4=9+4(2x−1). Which choice describes the meaning of her result, 4=5?
    9·2 answers
  • Brenda is building a square fence. She places a fence post at (─3,2). What is the location of the post (in which quadrant) that
    6·1 answer
  • YALL HELP<br> plz give me a fraction problem that contains division and multiplication !!
    15·1 answer
  • 15 divided by 0.3 + 6 divided by 0.02
    11·2 answers
  • What fraction is 4 min 30sec of 12 min.​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!