1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
14

A study of long-distance phone calls made from General Electric Corporate Headquarters in Fairfield, Connecticut, revealed the l

ength of the calls, in minutes, follows the normal probability distribution. The mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.
a. What fraction of the calls last between 4.50 and 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
b. What fraction of the calls last more than 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
c. What fraction of the calls last between 5.30 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
d. What fraction of the calls last between 4.00 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
e. As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 5 percent of the calls. What is this time? (Round z-score computation to 2 decimal places and your final answer to 2 decimal places.)
Mathematics
1 answer:
Katena32 [7]3 years ago
7 0

Answer:

(a) The fraction of the calls last between 4.50 and 5.30 minutes is 0.3729.

(b) The fraction of the calls last more than 5.30 minutes is 0.1271.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is 0.1109.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is 0.745.

(e) The time is 5.65 minutes.

Step-by-step explanation:

We are given that the mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.

Let X = <u><em>the length of the calls, in minutes.</em></u>

So, X ~ Normal(\mu=4.5,\sigma^{2} =0.70^{2})

The z-score probability distribution for the normal distribution is given by;

                           Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 4.5 minutes

           \sigma = standard deviation = 0.7 minutes

(a) The fraction of the calls last between 4.50 and 5.30 minutes is given by = P(4.50 min < X < 5.30 min) = P(X < 5.30 min) - P(X \leq 4.50 min)

    P(X < 5.30 min) = P( \frac{X-\mu}{\sigma} < \frac{5.30-4.5}{0.7} ) = P(Z < 1.14) = 0.8729

    P(X \leq 4.50 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.5-4.5}{0.7} ) = P(Z \leq 0) = 0.50

The above probability is calculated by looking at the value of x = 1.14 and x = 0 in the z table which has an area of 0.8729 and 0.50 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.8729 - 0.50 = <u>0.3729</u>.

(b) The fraction of the calls last more than 5.30 minutes is given by = P(X > 5.30 minutes)

    P(X > 5.30 min) = P( \frac{X-\mu}{\sigma} > \frac{5.30-4.5}{0.7} ) = P(Z > 1.14) = 1 - P(Z \leq 1.14)

                                                              = 1 - 0.8729 = <u>0.1271</u>

The above probability is calculated by looking at the value of x = 1.14 in the z table which has an area of 0.8729.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is given by = P(5.30 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 5.30 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 5.30 min) = P( \frac{X-\mu}{\sigma} \leq \frac{5.30-4.5}{0.7} ) = P(Z \leq 1.14) = 0.8729

The above probability is calculated by looking at the value of x = 2.14 and x = 1.14 in the z table which has an area of 0.9838 and 0.8729 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.8729 = <u>0.1109</u>.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is given by = P(4.00 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 4.00 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 4.00 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.0-4.5}{0.7} ) = P(Z \leq -0.71) = 1 - P(Z < 0.71)

                                                              = 1 - 0.7612 = 0.2388

The above probability is calculated by looking at the value of x = 2.14 and x = 0.71 in the z table which has an area of 0.9838 and 0.7612 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.2388 = <u>0.745</u>.

(e) We have to find the time that represents the length of the longest (in duration) 5 percent of the calls, that means;

            P(X > x) = 0.05            {where x is the required time}

            P( \frac{X-\mu}{\sigma} > \frac{x-4.5}{0.7} ) = 0.05

            P(Z > \frac{x-4.5}{0.7} ) = 0.05

Now, in the z table the critical value of x which represents the top 5% of the area is given as 1.645, that is;

                      \frac{x-4.5}{0.7}=1.645

                      {x-4.5}{}=1.645 \times 0.7

                       x = 4.5 + 1.15 = 5.65 minutes.

SO, the time is 5.65 minutes.

You might be interested in
3/5 divided by 1/2
balu736 [363]

Answer:

The work space in Elisha's room has a width of 1/2 meter and an area of 3/5 square meter. How long is it?

Step-by-step explanation:

In this, width of the room is given and the area is given. We have to find the length.

To find the length, area should be divided by width.

ie. 3/5 divided by 1/2

6 0
3 years ago
Jeanette is starting a business selling handmade necklaces. She has decided to invest an initial amount of $400 for advertising,
lana66690 [7]

Answer:

25 necklaces

Step-by-step explanation:

each necklace brings $16 profit (20-4=16)

400÷ 16= 25

so, at 25 necklaces, there will be enough profit to break even after paying for the advertising.

8 0
2 years ago
X≥1 x≤7 y≥-1/3x+6
Goshia [24]

Answer:

Step-by-step explanation:

i am unsure of what you actually need, but i want to help you.

if you were to set the boundaries of the feasibility region it would be as follows:

as points

A(1, 17/3)   B(7, 11/3)   C(7, infinity)   D(1, infinity)

as graphs

y=-1/3x+6 where 1≤x≤7

x=1

x=7

7 0
3 years ago
Read 2 more answers
Find the area of a rectangle that has a length of (x - 5) and a width of (3x + 1).
avanturin [10]

Answer:

A=3x^2 -14x -5

Step-by-step explanation:

(x-5)(3x+1)

3x^2 +x -15x -5

3x^2 -14x -5

5 0
3 years ago
7/10, 3/20, 22/25, 2/5 in order from least to greatest
swat32
3/20, 2/5, 7/10 & 22/25
7 0
3 years ago
Other questions:
  • Someone please help me
    14·1 answer
  • What is the solution to the system of equations?
    8·2 answers
  • If w+ -4 2/5= 1/10 what does w equal
    13·1 answer
  • determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give a counterexamp
    14·1 answer
  • Find each missing angle measure<br> 3=<br> 4=
    10·1 answer
  • What is the surface area, in square millimeters, of the solid? You don’t have to show work, just tell me the answer
    15·2 answers
  • Which graph shows the solution set for -5/2x -3&lt;2 ​
    7·2 answers
  • Consider the following polynomial:
    15·1 answer
  • 9000+300+100times 6divided by 800​
    8·2 answers
  • 8- (-3) = please help me ​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!