1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
4 years ago
14

A study of long-distance phone calls made from General Electric Corporate Headquarters in Fairfield, Connecticut, revealed the l

ength of the calls, in minutes, follows the normal probability distribution. The mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.
a. What fraction of the calls last between 4.50 and 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
b. What fraction of the calls last more than 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
c. What fraction of the calls last between 5.30 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
d. What fraction of the calls last between 4.00 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
e. As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 5 percent of the calls. What is this time? (Round z-score computation to 2 decimal places and your final answer to 2 decimal places.)
Mathematics
1 answer:
Katena32 [7]4 years ago
7 0

Answer:

(a) The fraction of the calls last between 4.50 and 5.30 minutes is 0.3729.

(b) The fraction of the calls last more than 5.30 minutes is 0.1271.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is 0.1109.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is 0.745.

(e) The time is 5.65 minutes.

Step-by-step explanation:

We are given that the mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.

Let X = <u><em>the length of the calls, in minutes.</em></u>

So, X ~ Normal(\mu=4.5,\sigma^{2} =0.70^{2})

The z-score probability distribution for the normal distribution is given by;

                           Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 4.5 minutes

           \sigma = standard deviation = 0.7 minutes

(a) The fraction of the calls last between 4.50 and 5.30 minutes is given by = P(4.50 min < X < 5.30 min) = P(X < 5.30 min) - P(X \leq 4.50 min)

    P(X < 5.30 min) = P( \frac{X-\mu}{\sigma} < \frac{5.30-4.5}{0.7} ) = P(Z < 1.14) = 0.8729

    P(X \leq 4.50 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.5-4.5}{0.7} ) = P(Z \leq 0) = 0.50

The above probability is calculated by looking at the value of x = 1.14 and x = 0 in the z table which has an area of 0.8729 and 0.50 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.8729 - 0.50 = <u>0.3729</u>.

(b) The fraction of the calls last more than 5.30 minutes is given by = P(X > 5.30 minutes)

    P(X > 5.30 min) = P( \frac{X-\mu}{\sigma} > \frac{5.30-4.5}{0.7} ) = P(Z > 1.14) = 1 - P(Z \leq 1.14)

                                                              = 1 - 0.8729 = <u>0.1271</u>

The above probability is calculated by looking at the value of x = 1.14 in the z table which has an area of 0.8729.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is given by = P(5.30 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 5.30 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 5.30 min) = P( \frac{X-\mu}{\sigma} \leq \frac{5.30-4.5}{0.7} ) = P(Z \leq 1.14) = 0.8729

The above probability is calculated by looking at the value of x = 2.14 and x = 1.14 in the z table which has an area of 0.9838 and 0.8729 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.8729 = <u>0.1109</u>.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is given by = P(4.00 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 4.00 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 4.00 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.0-4.5}{0.7} ) = P(Z \leq -0.71) = 1 - P(Z < 0.71)

                                                              = 1 - 0.7612 = 0.2388

The above probability is calculated by looking at the value of x = 2.14 and x = 0.71 in the z table which has an area of 0.9838 and 0.7612 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.2388 = <u>0.745</u>.

(e) We have to find the time that represents the length of the longest (in duration) 5 percent of the calls, that means;

            P(X > x) = 0.05            {where x is the required time}

            P( \frac{X-\mu}{\sigma} > \frac{x-4.5}{0.7} ) = 0.05

            P(Z > \frac{x-4.5}{0.7} ) = 0.05

Now, in the z table the critical value of x which represents the top 5% of the area is given as 1.645, that is;

                      \frac{x-4.5}{0.7}=1.645

                      {x-4.5}{}=1.645 \times 0.7

                       x = 4.5 + 1.15 = 5.65 minutes.

SO, the time is 5.65 minutes.

You might be interested in
How can you create an equivalent equation that looks different than the
NeX [460]

Answer:

You would keep the same slope but a different y-int I'm pretty sure.

6 0
3 years ago
Given f (x) = 2x^2 -3x + 5, find f (-4)
bogdanovich [222]
-1=x is the answer I’m pretty sure
4 0
3 years ago
Read 2 more answers
Heather spent $38.50. heather spent 1/3 of what anthony spent​
mariarad [96]

Answer:

Anthony spent $115.50 hope this helps

Step-by-step explanation:

3 0
4 years ago
Read 2 more answers
Are the expressions -0.5(3x + 5) and -1.5x + 2.5 equivalent? Explain why or why not.
Vikki [24]
No, they are not equivalent because if you distribute the -0.5 in the expression -0.5(3x+5) you will get -1.5x-2.5 which is not the same as -1.5+2.5
5 0
3 years ago
Rashid is paid by the hour. He earned $50 for a 4-hour workday. How much does he earn for a 5 1/4-hour workday?
xeze [42]
ANSWER: $65.63

$50 divided by 4 hours = $12.50 per hour
1/4 can also be written as the fraction 0.25
So 5 1/4 hours is the same as 5.25 hours
$12.50 per hour x 5.25 hours = $65.625 rounded to the nearest cent = $65.63
5 0
4 years ago
Other questions:
  • Jerry lost her credit card and instead of reporting it right away, she decides to continue looking for it for a couple of days.
    14·1 answer
  • What is the slope of the line?
    10·1 answer
  • If you have 24 as perimeter what is the area
    6·2 answers
  • Line d is parallel to line c in the figure below. Which statements about the figure are true? Select three options.
    13·1 answer
  • Caroline has 16 arbles .one eighth 0f them are blue ,how many of caroline,s marble blue
    5·1 answer
  • Write a multiplication problem in which the product is between . 05 and . 75.
    15·1 answer
  • I have 1 hour to do this. please help me :). 20pts!!!
    14·1 answer
  • Pls help due asap <br> thanks
    8·2 answers
  • Pupil who scored 60 in her maths test was absent for English predict what her English mark could have been
    5·1 answer
  • Katelyn went to the store and brought 2 shirts that were orginally $12 each, but got a 15% discount off each shir. If she has to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!