1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
14

A study of long-distance phone calls made from General Electric Corporate Headquarters in Fairfield, Connecticut, revealed the l

ength of the calls, in minutes, follows the normal probability distribution. The mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.
a. What fraction of the calls last between 4.50 and 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
b. What fraction of the calls last more than 5.30 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
c. What fraction of the calls last between 5.30 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
d. What fraction of the calls last between 4.00 and 6.00 minutes? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
e. As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 5 percent of the calls. What is this time? (Round z-score computation to 2 decimal places and your final answer to 2 decimal places.)
Mathematics
1 answer:
Katena32 [7]3 years ago
7 0

Answer:

(a) The fraction of the calls last between 4.50 and 5.30 minutes is 0.3729.

(b) The fraction of the calls last more than 5.30 minutes is 0.1271.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is 0.1109.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is 0.745.

(e) The time is 5.65 minutes.

Step-by-step explanation:

We are given that the mean length of time per call was 4.5 minutes and the standard deviation was 0.70 minutes.

Let X = <u><em>the length of the calls, in minutes.</em></u>

So, X ~ Normal(\mu=4.5,\sigma^{2} =0.70^{2})

The z-score probability distribution for the normal distribution is given by;

                           Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = population mean time = 4.5 minutes

           \sigma = standard deviation = 0.7 minutes

(a) The fraction of the calls last between 4.50 and 5.30 minutes is given by = P(4.50 min < X < 5.30 min) = P(X < 5.30 min) - P(X \leq 4.50 min)

    P(X < 5.30 min) = P( \frac{X-\mu}{\sigma} < \frac{5.30-4.5}{0.7} ) = P(Z < 1.14) = 0.8729

    P(X \leq 4.50 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.5-4.5}{0.7} ) = P(Z \leq 0) = 0.50

The above probability is calculated by looking at the value of x = 1.14 and x = 0 in the z table which has an area of 0.8729 and 0.50 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.8729 - 0.50 = <u>0.3729</u>.

(b) The fraction of the calls last more than 5.30 minutes is given by = P(X > 5.30 minutes)

    P(X > 5.30 min) = P( \frac{X-\mu}{\sigma} > \frac{5.30-4.5}{0.7} ) = P(Z > 1.14) = 1 - P(Z \leq 1.14)

                                                              = 1 - 0.8729 = <u>0.1271</u>

The above probability is calculated by looking at the value of x = 1.14 in the z table which has an area of 0.8729.

(c) The fraction of the calls last between 5.30 and 6.00 minutes is given by = P(5.30 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 5.30 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 5.30 min) = P( \frac{X-\mu}{\sigma} \leq \frac{5.30-4.5}{0.7} ) = P(Z \leq 1.14) = 0.8729

The above probability is calculated by looking at the value of x = 2.14 and x = 1.14 in the z table which has an area of 0.9838 and 0.8729 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.8729 = <u>0.1109</u>.

(d) The fraction of the calls last between 4.00 and 6.00 minutes is given by = P(4.00 min < X < 6.00 min) = P(X < 6.00 min) - P(X \leq 4.00 min)

    P(X < 6.00 min) = P( \frac{X-\mu}{\sigma} < \frac{6-4.5}{0.7} ) = P(Z < 2.14) = 0.9838

    P(X \leq 4.00 min) = P( \frac{X-\mu}{\sigma} \leq \frac{4.0-4.5}{0.7} ) = P(Z \leq -0.71) = 1 - P(Z < 0.71)

                                                              = 1 - 0.7612 = 0.2388

The above probability is calculated by looking at the value of x = 2.14 and x = 0.71 in the z table which has an area of 0.9838 and 0.7612 respectively.

Therefore, P(4.50 min < X < 5.30 min) = 0.9838 - 0.2388 = <u>0.745</u>.

(e) We have to find the time that represents the length of the longest (in duration) 5 percent of the calls, that means;

            P(X > x) = 0.05            {where x is the required time}

            P( \frac{X-\mu}{\sigma} > \frac{x-4.5}{0.7} ) = 0.05

            P(Z > \frac{x-4.5}{0.7} ) = 0.05

Now, in the z table the critical value of x which represents the top 5% of the area is given as 1.645, that is;

                      \frac{x-4.5}{0.7}=1.645

                      {x-4.5}{}=1.645 \times 0.7

                       x = 4.5 + 1.15 = 5.65 minutes.

SO, the time is 5.65 minutes.

You might be interested in
I don’t know the answer and I’m doing a text I need help!
swat32

Answer:

your answer will be A

Step-by-step explanation:

^_^

8 0
2 years ago
Id iotn like branly plus it keep asking for money and it s super annoying
PIT_PIT [208]

Answer:

YESSSS ikr like every minute it say UpGrAdE uR bRaInLy and its just ike I ALREADY DIDDDDDD it is VERYYY anouing

Step-by-step explanation:

5 0
3 years ago
Claire can run 400 meters in 45 seconds. What is her rate in meters per<br> second?
horsena [70]

Answer:

8.9 meters per second I think.

Step-by-step explanation:

400 divided by 45

4 0
3 years ago
Read 2 more answers
Which country is a democracy that legally requires its citizens to vote?
Studentka2010 [4]

Answer:

Costa Rica

Step-by-step explanation:

3 0
3 years ago
The school that Emily goes to is selling tickets to the annual dance competition.
Vilka [71]

Answer:

price for senior citizen is $11

price for child ticket is $8

4 0
3 years ago
Other questions:
  • Help with question 3 plz
    13·1 answer
  • A standard deck of cards contains 52 cards. thirteen of the cards are spades, and three of the spades are face cards. in all, th
    11·1 answer
  • Complete the equation of the line through (2,-2)(2,−2)left parenthesis, 2, comma, minus, 2, right parenthesis and (4,1)(4,1)left
    15·1 answer
  • Solve x 2 + 6x - 5 = 0 by completing the square. Which equation is used in the process?
    14·1 answer
  • How do I solve for 7y-4x=42 x=5y+9
    15·1 answer
  • PLEASE HELP !!!!!!!!!!!
    8·1 answer
  • 32)<br> Solve for x:<br> 5(x + 1) - 8 = 5x(2 - 4)<br> A)<br> -5<br> B)<br> 5<br> D)
    12·2 answers
  • Washington Middle School is hosting a pancake breakfast fundraiser to raise money for a new outdoor field area. They will be org
    13·2 answers
  • I need help here with explanation pleaseeeee
    10·1 answer
  • A bar of soap with dimensions 2 x 4 x 0.5 inches is sold for $3 individually. A three-pack of the same soap costs $8. How much d
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!