Let

. Then

and

are two fundamental, linearly independent solution that satisfy


Note that

, so that

. Adding

doesn't change this, since

.
So if we suppose

then substituting

would give

To make sure everything cancels out, multiply the second degree term by

, so that

Then if

, we get

as desired. So one possible ODE would be

(See "Euler-Cauchy equation" for more info)
A. 6, 7, 8, 9
B. 2, 5, 8, 11
C. 5, 8, 13, 20
D. 3, 12, 27, 48
Answer:
{x=2,y=2
Step-by-step explanation:
Equation 1:
Multiply both sides of the equation by a coefficient
{ 4(2x-y)=2*4
-5x+4y=-2
Apply Multiplicative Distribution Law
{8x-4y=2*4,-5x+4y=-2
8x-4y+(-5x+4y)=8+(-2)
Remove parentheses
8x-4y-5x+4y=8-2
Cancel one variable
8x-5x=8-2
Combine like terms
3x=8-2
Calculate the sum or difference
3x=6
Divide both sides of the equation by the coefficient of the variable
x=6/3
Calculate the product or quotient
x=2
Equation two:
{-5+4y=-2, x=2
-5*2+4y=-2
Calculate the product or quotient
-10+4y =-2
Reduce the greatest common factor (GCF) on both sides of the equation
-5+2y=-1
Rearrange unknown terms to the left side of the equation
2y=-1+5
Calculate the sum or difference
2y=4
Divide both sides of the equation by the coefficient of the variable
y=4/2
y=2
Hope this helps!!
Answer:
y=x+5
Step-by-step explanation:
The slope of the line is (9-5)/(4-0)=1, and the y-intercept is 5, so the equation is y = x + 5.
Answer:
The reason Carlos chose A as the correct answer is because by the way 4,325,000,000 is set up in standard form he would have it set back to 4.325 x 10^-9 instead of 4.325 x 10^9