Givens
Petri Dish A sees a double ever 10 minutes
Petri Dish B sees a double ever 6 minutes
Consequences
A doubles 60 / 10 = 6 times.
B doubles 60 / 6 = 10 times.
Solution
If you work best with numbers then suppose there are 100 bacteria in both dishes at the beginning
A = 100 * 2^6
B = 100 * 2^10
A will have 100 * 64 = 6400 bacteria growing inside A
B will have 100 * 1024 = 102400 bacteria growing inside B
B/A = 102400 / 6400 = 16
There are 16 times as many in B than in A. <<<< Answer
Answer:
9
Step-by-step explanation:
Let the two perfect cubes be x and y where x > y.
According to the given conditions:
![{x}^{3} - {y}^{3} = 386...(1) \\ y = 7...(2) \\ plug \: y = 7 \: in \: equation \: (1) \\ {x}^{3} - {7}^{3} = 386 \\ {x}^{3} - 343 = 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 729 \\ x = \sqrt[3]{729} \\ x = 9](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7By%7D%5E%7B3%7D%20%20%3D%20386...%281%29%20%5C%5C%20y%20%3D%207...%282%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%207%20%5C%3A%20in%20%5C%3A%20equation%20%5C%3A%20%281%29%20%5C%5C%20%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7B7%7D%5E%7B3%7D%20%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20-%20%20343%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%3D%20729%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7B729%7D%20%20%5C%5C%20x%20%3D%209)
Thus the cube root of the larger number is 9.
To make a box and whisker plot you must first order the data:
11, 13, 16, 18, 21, 23, 24, 29
Then find the median:
19.5
Then split the data into two sections by the median:
11, 13, 16, 18 and 21, 23, 24, 29
Now find the medians of those sets
14.5 and 23.5
With this information we can conclude Option C is the correct plot
Hope this helps!
I will show you the steps on how you get that answer and if you have any questions after that let me know and I'd be more than happy to help answer them for you.
The first step for solving (1 + y)² is to use the equation (a + b)² = a² + 2ab + b² to expand the expression.
1² + 2 × 1y + y²
1 raised to any power equals 1,, so remove the power.
1 + 2 × 1y + y²
Calculate the product of 2 × 1y.
1 + 2y + y²
Finally,, use the commutative property to reorder the terms.
y² + 2y + 1
Let me know if you have any further questions.
:)