The longest possible altitude of the third altitude (if it is a positive integer) is 83.
According to statement
Let h is the length of third altitude
Let a, b, and c be the sides corresponding to the altitudes of length 12, 14, and h.
From Area of triangle
A = 1/2*B*H
Substitute the values in it
A = 1/2*a*12
a = 2A / 12 -(1)
Then
A = 1/2*b*14
b = 2A / 14 -(2)
Then
A = 1/2*c*h
c = 2A / h -(3)
Now, we will use the triangle inequalities:
2A/12 < 2A/14 + 2A/h
Solve it and get
h<84
2A/14 < 2A/12 + 2A/h
Solve it and get
h > -84
2A/h < 2A/12 + 2A/14
Solve it and get
h > 6.46
From all the three inequalities we get:
6.46<h<84
So, the longest possible altitude of the third altitude (if it is a positive integer) is 83.
Learn more about TRIANGLE here brainly.com/question/2217700
#SPJ4
There was a time that a friend of mine got to a decision because the leader of the group said so (it was a group project). Although it was clear that he did not want to comply to the decision, he made it because it was what the leader said so.
(4x-1)=(5x-8)
x=7
4(7)-1= 27
5(7)-8= 27
So the answer is 27
<span>MN = 27</span>
Answer:
Liquid R has a mass of of 1 kg at a temperature of 30°c kept in a refrigerator to freeze . Given the specific heat capacity is 300 J kg-¹ °c-1 and the freezing point is 4°c . Calculate the heat release by liquid R.
Step-by-step explanation:
Liquid R has a mass of of 1 kg at a temperature of 30°c kept in a refrigerator to freeze . Given the specific heat capacity is 300 J kg-¹ °c-1 and the freezing point is 4°c . Calculate the heat release by liquid R.
The answer is 10:40
so 1:4
add it up
1+4=5
so 5 total units
$50=5 units
divide by 5
$10=1 unit
so 1:4=10:10 times 4=10:40
the answer is 10:40