Answer:
The frequency of rolling a 3 or a 6 would be the same even if you try thousands or millions times.
The probability of rolling a 3 is: 1/ total outcomes probability = 1/6
The probability of rolling a 6 is: 1/ total outcomes probability = 1/6
The probability of rolling a 6 or a 3 = 2/ total outcomes probability = 2/6 = 1/3
Therefore, if you rolling the cube 600 times, the probability of rolling a 3 or a 6 is still 1/6. If 3 and 6 are both allowed, the probability would become 1/3
Hope this helped :3
Answer:
A, 120.
Step-by-step explanation:
x-15+75=180
x+60=180
x=120.
Answer:
2m + 153.5
Step-by-step explanation:
Hey there
2m = The word times means multiplication. So, multiply 2 and m.
153.5 = The phrase more than means addition. So, add 2m and 153.5.
hope it helped
The answer should be (13+y)/5
----------------------------------------------------------------
Find Radius :
----------------------------------------------------------------
Radius of the semicircle = 10 ÷ 2 = 5cm
----------------------------------------------------------------
Find Area of the semi circle :
----------------------------------------------------------------
Area of the semi circle = 1/2 πr²
Area of the semi circle = 1/2 x π x (5)²
Area of the semi circle = 12.5π cm²
----------------------------------------------------------------
Find Radius :
----------------------------------------------------------------
Radius of the inner circle = 5 ÷ 2 = 2.5 cm
----------------------------------------------------------------
Find area of inner circle :
----------------------------------------------------------------
Area of the inner circle = πr²
Area of the inner circle = π x (2.5)²
Area of the inner circle = 6.25π
----------------------------------------------------------------
Area of the shaded region :
----------------------------------------------------------------
Area of the shaded region = 12.5π - 6.25π
Area of the shaded region = 6.25π
Area of the shaded region = 19.63 cm²
----------------------------------------------------------------
Answer: Area of the shaded region = 19.63 cm²
----------------------------------------------------------------