Answer:
- Solution of equation ( x ) = <u>7</u>
Step-by-step explanation:
In this question we have given with an equation that is <u>4</u><u> </u><u>(</u><u> </u><u>5</u><u>x</u><u> </u><u>-</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>3 </u><u>)</u><u>.</u> And we are asked to solve this equation that means we have to find the value of <u>x</u><u>.</u><u> </u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
<u>
</u>
<u>Step </u><u>1</u><u> </u><u>:</u> Removing parenthesis :

<u>Step </u><u>2</u><u> </u><u>:</u> Adding 8 from both sides :

On further calculations we get :

<u>Step </u><u>3 </u><u>:</u> Subtracting 18 from both sides :

On further calculations we get :

<u>Step </u><u>4</u><u> </u><u>:</u> Dividing with 2 on both sides :

On further calculations we get :

- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>or </u><u>we </u><u>can </u><u>say </u><u>that </u><u>value </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
We are verifying our answer by substituting value of x in given equation. So ,
- 4 ( 5x - 2 ) = 2 ( 9x + 3 )
- 4 [ 5 ( 7 ) - 2 ] = 2 [ 9 ( 7 ) + 3 ]
- 4 ( 35 - 2 ) = 2 ( 63 + 3 )
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>value</u><u> for</u><u> x</u><u> is</u><u> </u><u>correct </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Answer:
5 packages of water and 3 packages of cheese sticks
Step-by-step explanation:
the least common multiple of 6 and 10 is 30
Answer:
The equation of the quadratic function shown is;
x^2+ 2x -3
Step-by-step explanation:
Here in this question, we need to know the quadratic equation whose graph was shown.
The key to answering this lies in knowing the roots of the equation.
The roots of the equation are the solution to the quadratic equation and can be seen from the graph at the point where the quadratic equation crosses the x-axis.
The graph crosses the x-axis at two points.
These are at the points x = -3 and x = 1
So what we have are;
x + 3 and x -1
Multiplying both will give us the quadratic equation we are looking for.
(x + 3)(x-1) = x(x -1) + 3(x-1)
= x^2 -x + 3x -3 = x^2 + 2x -3
Answer:
Answer: 15
Step-by-step explanation: