Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks
Answer:
see picture below
Step-by-step explanation:
The answer is B I agree with him/her
Answer:
Step-by-step explanation:
Answer:
y = -x +4
Step-by-step explanation:
The y-intercept of the line is at +4, so the only viable choice is the last choice.
___
Each of the equations is shown in slope-intercept form:
y = mx + b
where b is the y-intercept, the y-value when x=0. The graph shows that as point (0, 4). So, the equation you're looking for is ...
y = (some x-term) +4
If you want to spend more brain power on the problem, you can compute the slope of the line as ...
m = ∆y/∆x = (1-4)/(3-0) = -3/3 = -1
Now, you know for sure the equation of the line is ...
y = -x +4