This would simplify to 6.60 meters/second.
A 1:12 is the answer for this question
Answer:
-4 <n <= 5
Step-by-step explanation:
Open at -4 and closed at 5 on number line so the inequality should be
-4 <n <= 5
60 = a * (-30)^2
a = 1/15
So y = (1/15)x^2
abc)
The derivative of this function is 2x/15. This is the slope of a tangent at that point.
If Linda lets go at some point along the parabola with coordinates (t, t^2 / 15), then she will travel along a line that was TANGENT to the parabola at that point.
Since that line has slope 2t/15, we can determine equation of line using point-slope formula:
y = m(x-x0) + y0
y = 2t/15 * (x - t) + (1/15)t^2
Plug in the x-coordinate "t" that was given for any point.
d)
We are looking for some x-coordinate "t" of a point on the parabola that holds the tangent line that passes through the dock at point (30, 30).
So, use our equation for a general tangent picked at point (t, t^2 / 15):
y = 2t/15 * (x - t) + (1/15)t^2
And plug in the condition that it must satisfy x=30, y=30.
30 = 2t/15 * (30 - t) + (1/15)t^2
t = 30 ± 2√15 = 8.79 or 51.21
The larger solution does in fact work for a tangent that passes through the dock, but it's not important for us because she would have to travel in reverse to get to the dock from that point.
So the only solution is she needs to let go x = 8.79 m east and y = 5.15 m north of the vertex.
Answer:
<h2>X greater-than 0</h2>
Step-by-step explanation:
The given function is

Which is a logarithm function. An important characteristic of logarithms is that their domain cannot be negatice, because the logarithm of a negative number is undefined, the same happens for x=0.
Therefore, the domain of this function is all real numbers more than zero.
The image attached shows the graph of this function, there you can notice its domain restriction.
So, the right answer is the first choice: x greater than 0.