Answer: it is C
The thermistor
Explanation:
Thermistors (temperature-sensitive, or thermal, resistors) are used as temperature-measuring devices and in electrical circuits to compensate for temperature variations of other components. They are also used to measure radio-frequency power and radiant power, such as infrared and visible light.
To measure the intensity of the electromagnetic wave after knowing the frequency, we can calculate it by using fast fourier transformations (FFT).
Answer:
Explanation:
The standard equation of the sinusoidal wave in one dimension is given by

Here, A be the amplitude of the wave
λ be the wavelength of the wave
v be the velocity of the wave
Φ be the phase angle
x be the position of the wave
t be the time
this wave is travelling along positive direction of X axis
The frequency of wave is f which relates with velocity and wavelength as given below
v = f x λ
The relation between the time period and the frequency is
f = 1 / T.
Answer:
materials which exhibit a spontaneous net magnetization at the atomic level, even in the absence of an external magnetic field.
Explanation:
When a material is placed within a magnetic field, the magnetic forces of the material's electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. However, materials can react quite differently to the presence of an external magnetic field. This reaction is dependent on a number of factors, such as the atomic and molecular structure of the material, and the net magnetic field associated with the atoms. The magnetic moments associated with atoms have three origins. These are the electron motion, the change in motion caused by an external magnetic field, and the spin of the electrons.
Answer:
The false statement is 'Electric field lines form closed loops'.
Explanation:
- Electric field lines originate from positive end and terminates at negative end,i.e., field lines are inward in direction to the negative charges and outward from the positive charges.
- These lines when close together represents high intensity and when far apart shows low intensity of the field.
- These lines do not intersect, as the tangent drawn on these lines provides us with the field direction and intersection of these lines means two field directions which is not possible.
- These lines unlike magnetic field lines do not form closed loops as they do not turn around but originate at positive end and terminates at negative end which ensures no loop formation.
Answer:
100 J
Explanation:
The potential energy is given by the formula ...
PE = mgh
= (2 kg)(10 m/s^2)(5 m) = 100 J