1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
____ [38]
3 years ago
6

Sunlight strikes a solar panel, which is then used to power the lights in a

Physics
2 answers:
Stells [14]3 years ago
7 0

Answer:

B

Explanation:

Sunlight comes in the form of light energy. Upon striking the solar panels, it converts the light energy into electrical energy so as to run throughout the circuits. Then since it's used to power light, the electrical energy will be converted back into light energy

faltersainse [42]3 years ago
3 0

Answer: Option B (Light energy to electric energy to light energy)

Explanation: First, the radiation that comes from the sun, and this radiation (in the form of light and heat) is absorbed by the panel.

Now, a thermal panel absorbs light, so the initial step is light energy.

Now the panel transforms that light energy into something that can be stored, like the chemical energy that goes in a battery or the electrical energy that runs in a house, in this case, the light energy is directly transformed into the electrical energy that runs in the house, and that electrical energy is used to power the lights in the house, so it transforms into light energy.

Then the correct option is B

You might be interested in
Water is pumped steadily out of a flooded basement at a speed of 5.4 m/s through a uniform hose of radius 0.83 cm. The hose pass
Gala2k [10]

To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.

The work done would be defined as

\Delta W = \Delta PE + \Delta KE

Where,

PE = Potential Energy

KE = Kinetic Energy

\Delta W = (\Delta m)gh+\frac{1}{2}(\Delta m)v^2

Where,

m = Mass

g = Gravitational energy

h = Height

v = Velocity

Considering power as the change of energy as a function of time we will then have to

P = \frac{\Delta W}{\Delta t}

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

The rate of mass flow is,

\frac{\Delta m}{\Delta t} = \rho_w Av

Where,

\rho_w = Density of water

A = Area of the hose \rightarrow A=\pi r^2

The given radius is 0.83cm or 0.83 * 10^{-2}m, so the Area would be

A = \pi (0.83*10^{-2})^2

A = 0.0002164m^2

We have then that,

\frac{\Delta m}{\Delta t} = \rho_w Av

\frac{\Delta m}{\Delta t} = (1000)(0.0002164)(5.4)

\frac{\Delta m}{\Delta t} = 1.16856kg/s

Final the power of the pump would be,

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

P = (1.16856)((9.8)(3.5)+\frac{1}{2}5.4^2)

P = 57.1192W

Therefore the power of the pump is 57.11W

6 0
3 years ago
Longer wavelengths of light, such as _______, have ________ energy than shorter wavelengths, such as _________
Ilya [14]

Answer:

Micro and radio waves.

Lower energy.

Gamma rays.

Explanation:

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.

Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.

The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.

The velocity of a wave is directly proportional to the frequency of that wave.

c = f * lambda

Where,

c = velocity of the wave

f = frequency of the wave = 1/time

Lambda = wavelength.

From the above expression, the longer the wavelength, lambda the shorter the frequency.

Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.

8 0
2 years ago
A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.5\times 10^{-
joja [24]

Answer:

5.25\cdot 10^{40} kg m^2/s

Explanation:

The angular momentum of the pulsar is given by:

L=m\omega r^2

where

m=2.8\cdot 10^{30} kg is the mass of the pulsar

r = 10.0 km = 1\cdot 10^4 m is the radius

\omega is the angular speed

Given the period of the pulsar, T=33.5\cdot 10^{-3} s, the angular speed is given by

\omega=\frac{2\pi}{T}=\frac{2 \pi}{33.5\cdot 10^{-3}s}=187.5 rad/s

And so, the angular momentum is

L=m\omega r^2=(2.8\cdot 10^{30}kg)(187.5 rad/s)(1\cdot 10^4 m)^2=5.25\cdot 10^{40} kg m^2/s

8 0
3 years ago
What happens at night- describing air circulation
mash [69]

Answer:

The environment is warmed by the light throughout the day, such that the temperature increases. The weather is decreasing and the temperature decreases in the night as the sun falls. There was a misunderstanding. Thanks to the density, the atmosphere becomes densest on the earth. The air becomes colder and colder when you move up.

Explanation:

Answer is above

<em><u>Hope this helps.</u></em>

5 0
3 years ago
A large 10.kg medicine ball is caught by a 70.kg student on the track team. If the ball was moving at 4.0 m/s, how fast will the
exis [7]

v2 = ?

m1 = 10kg

m2 = 70kg

v1 = 4m/s

E1 = E2

E1 = 1/2 * m1 * v1^2 = 1/2 * 10kg * 4m/s^2 = 80J

E2 = 1/2 * m2 * v2^2 = 80 J

v2 = √(E2/(2 * m2)) = √(80J/(2 * 70kg)) = about 0.76m/s

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the moment of inertia of a cube with mass M=0.500kg and side lengths s=0.030m about an axis which is both normal (perpen
    7·1 answer
  • When can a theory be modified if a new type of technology allows for new observations that raise new questions?
    9·2 answers
  • A: If a net force greater than 0 N is applied to an electron and to a proton, which one will accelerate more? The mass of an ele
    9·2 answers
  • A slender rod 100.00cm long is used as a meter stick. Twoparallel axes which are perpendicular to the rod are considered.The fir
    15·1 answer
  • How much kinetic energy does a moving 6 kg object have If It moves with a velocity of<br> 3 m/s?
    5·1 answer
  • Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a
    9·1 answer
  • three condensers are connected in series across a 150 volt supply. The voltages across them are 40,50 and 60 volts respectively,
    8·1 answer
  • So this helicopter pilot dropped me in the middle of an absolutely smooth frictionless
    10·2 answers
  • In scientific notation, 0.00074m can be written as 1- 0.74×10‐³m 2- 7.4×10-⁴m 3- 74×10‐⁵m 4- 740×10‐⁶m
    8·1 answer
  • Two metal disks are welded together and are mounted on a frictionless axis through their common centers. One disk has a radius R
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!