<span>This
is because astronomers have discovered that
the Crab Nebula is 6500 light years from earth. This means it takes 6500 earth years
for light to get from the Crab Nebula to
earth. Therefore, if we are able to observe the
Crab Nebula and beyond it then it means that earth has been in existence for 6500 years and
over. </span>
Answer:
the color is green
- 602.93 nm ( orange color )
the observation is that there is a change of visible color
Explanation:
A) wavelength of visible light that is most strongly reflected from a point on a soap
refraction n = 1.33
wall thickness (t) = 290 nm
2nt = (2m +1 ) ∝/2 -----equation 1
note when m = 0
therefore ∝ = 4nt/ 1 = 4 * 1.33 * 290 = 1542.8nm we will discard this
when m = 1
equation 1 becomes
∝ = 4nt/3 =( 4 * 1.33 * 290) / 3 = 1542.8 / 3 = 514.27 ( wavelength )
the color is green
B) the wavelength when the wall thickness is 340 nm
∝ = 4nt / 2m +1
where m = 1
∝ = (4 * 1.33 * 340 ) / 3 = 1808.8 / 3 = 602.93 nm ( orange color )
the observation is that there is a change of visible color
B.) Compressions
HOPPE IT HELPED
Explanation:
The formula to determine the eccentricity of an ellipse is the distance between foci divided by the length of the major axis
Correct temperature is 80°F
Answer:
T_f = 38.83°F
Explanation:
We are given;
Volume; V = 8 ft³
Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature; T_i = 80°F = 539.67 °R
Time for outlet flow; t_o = 90 s
Mass flow rate at outlet; m'_o = 0.03 lb/s
Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
Where v is initial specific volume
R is ideal gas constant = 53.33 ft.lbf/°R
Thus;
v = RT/P
v_i = 53.33 × 539.67/(100 × 12²)
v_i = 2 ft³/lb
Formula for initial mass is;
m_i = V/v_i
m_i = 8/2
m_i = 4 lb
Now change in mass is given as;
Δm = m'_o × t_o
Δm = 0.03 × 90
Δm = 2.7 lb
Now,
m_f = m_i - Δm
Thus; m_f = 4 - 2.7
m_f = 1.3 lb
Similarly in above;
v_f = V/m_f
v_f = 8/1.3
v_f = 6.154 ft³/lb
Again;
Pv = RT
Thus;
T_f = P_f•v_f/R
T_f = (30 × 12² × 6.154)/53.33
T_f = 498.5°R
Converting to °F gives;
T_f = 38.83°F