Answer:
the acceleration due to gravity g at the surface is proportional to the planet radius R (g ∝ R)
Explanation:
according to newton's law of universal gravitation ( we will neglect relativistic effects)
F= G*m*M/d² , G= constant , M= planet mass , m= mass of an object , d=distance between the object and the centre of mass of the planet
if we assume that the planet has a spherical shape, the object mass at the surface is at a distance d=R (radius) from the centre of mass and the planet volume is V=4/3πR³ ,
since M= ρ* V = ρ* 4/3πR³ , ρ= density
F = G*m*M/R² = G*m*ρ* 4/3πR³/R²= G*ρ* 4/3πR
from Newton's second law
F= m*g = G*ρ*m* 4/3πR
thus
g = G*ρ* 4/3π*R = (4/3π*G*ρ)*R
g ∝ R
Answer:
Downwards into the plane
Explanation:
Solution:-
- This is a conceptual application of hand rule. We will place our palm fingers open vertical to a plane surface. Then curl our fingers in and naturally point the thumb.
- The direction of curl of fingers denotes the direction of of current flow in the coil. Which in our case is "clockwise direction". We will orient/invert our right hand palm in such a way that we curl our fingers in clockwise fashion. Then stick the thumb out to give us the direction of magnetic field or North pole end. In our case the the thumb points downwards into the plane denoting that the magnetic field within the loop is also acting downwards into the plane.
- The bar magnet would be placed in such a way that North pole is pointing downward into the plane in the direction of magnetic field and end up at south pole pointing up out of the plane.
Answer:

Explanation:
Given,
mass = 1.41 g = 0.00141 Kg
Electric field,E = 670 N/C.
We know,
Force in charge due to Electric field.
F = E q
And also we know
F = m g
Equating both the equation of motion
m g = E q

Charge of the particle is equal to 
Chemical to thermal to electrical current: Burning of coal or natural gases. Gravitational potential to kinetic to electrical current.