Answer:
12.8 g of
must be withdrawn from tank
Explanation:
Let's assume
gas inside tank behaves ideally.
According to ideal gas equation- 
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin scale.
We can also write, 
Here V, T and R are constants.
So,
ratio will also be constant before and after removal of
from tank
Hence, 
Here,
and 
So, 
So, moles of
must be withdrawn = (0.66 - 0.26) mol = 0.40 mol
Molar mass of
= 32 g/mol
So, mass of
must be withdrawn = 
Answer:
D
Explanation:
beacause all the elements in period 3 has different valence electrons hence you look at the first element in period 3 is sodium which has a valence electron of 1 when you go across the period to the right their valence electron decreases to be negative
A substance can dissolve in another when they have thee same type of intermolecular interaction.
<h3>What is solubility?</h3>
The term solubility of a solute refers to the extent to which a solute dissolve in a solvent. We must know that a substance can dissolve in another when they have thee same type of intermolecular interaction.
Thus;
a) Octane (C8H18) mixes well with CCl4 because they are both non polar substances.
b) Methanol (CH3OH) is mixed with water in all ratios because the both are polar substances.
c) NaBr dissolves very poorly in acetone (CH3 ― CO ― CH3) because acetone is only slightly polar.
Learn more about solubility:brainly.com/question/8591226
#SPJ1
Answer:
Element 2
Explanation:
If we look at the model stated for element 1, it is clear that element 1 must be a noble gas. It has eight electrons in its outermost shell this implies that it has already attained a complete octet of electrons and is reluctant towards chemical reaction.
The second element belongs to group 16 since it has six electrons on its outermost shell. It is certainly more reactive than element 1 which is a noble gas.