Answer:
higher, left
Explanation:
Given that the reaction consumes 462 kJ of energy. It means that the reaction is a endothermic reaction.
In the energy profile of the endothermic diagrams, The reactants are at a very low level as compared to the products and hence, energy is supplied to overcome this difference.
Hence, The energy levels of products are <u>higher</u> than the energy level of reactant.
Hence, already stated, heat is required by the reaction and thus heat is written to the reactant side which is to the <u>left</u> side of the equation.
<h2>see in the attachment hope it helps you</h2>
Answer:
Most likely Spring or fall
Explanation:
Hope this helped:)
Sorry I'm late
Explanation:
2,6-Dibromo-4-isopropylphenol
2432-16-8
2,6-dibromo-4-propan-2-ylphenol
Phenol, 2,6-dibromo-4-(1-methylethyl)-
4-isopropyl-2,6-dibromophenol
We are given that the specific heat of water is 4.18 J / g
°C. We know that the molar mass of water is 18.02 g/mol, therefore the molar
heat capacity is:
molar heat capacity = (4.18 J / g °C) * 18.02 g / mol
<span>molar heat capacity = 75.32 J / mol °C</span>