Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases



Answer:
Catalysts help in increasing rates of reactions
The reactant that will be the best reactant for a nucleophilic aromatic substitution is NO₂- NO₂. The correct option is b.
<h3>What is nucleophilic
aromatic substitution?</h3>
Nucleophilic aromatic substitution is a substitution process of nucleophile substance is substituted by halides in an aromatic ring. Aromatic compounds contain this type of substitution.
In option b, the compound is the one nitroxide group substituted by halogen, that is fluorine. The fluorine group is substituted in these given aromatic compounds.
Thus, the correct option is b, NO₂- NO₂.
To learn more about nucleophilic aromatic substitution, refer to the link:
brainly.com/question/28265482
#SPJ4
The question is incomplete. Your most probably complete question is given below:
NO₂F
NO₂- NO₂-F
CH₃-O
CH₃-O-F
The formula for this is mol/kg = m. 4/3.2=1.25 m
Heat energy can be calculated by using the specific heat of a substance multiplying it to the mass of the sample and the change in temperature. It is expressed as:
<span>
Energy = mCΔT
</span><span>Energy = 132 (0.385) (45 - 32.2)
</span><span>Energy = 650.50 J</span>