Answer: The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Step-by-step explanation:
Let x and y area the random variable that represents the heights of women and men.
Given : The heights of women aged 20 to 29 are approximately Normal with mean 64 inches and standard deviation 2.7 inches.
i.e.

Since , 
Then, z-score corresponds to a woman 6 feet tall (i.e. x=72 inches).
[∵ 1 foot = 12 inches , 6 feet = 6(12)=72 inches]

Men the same age have mean height 69.3 inches with standard deviation 2.8 inches.
i.e.

Then, z-score corresponds to a man 5'10" tall (i.e. y =70 inches).
[∵ 1 foot = 12 inches , 5 feet 10 inches= 5(12)+10=70 inches]

∴ The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Answer:
87 000 000
Step-by-step explanation:
2.485 is round to 450 and 450 divide by 15 equals 30. 485 divide by 15 32 r 5
Answer:
V=14
Step-by-step explanation:
3v=42 divide both sides by 3. getting v=14
Answer:
10.6%
Step-by-step explanation:
Normal curves are symmetrical. That means that on a standard normal distribution, the area less than -1.25 is the same as the area greater than +1.25. The total area under the curve is 1, so:
P = 1 - 0.894
P = 0.106
Approximately 10.6% of the area under the curve lies below -1.25.