Answer:
2156J
Explanation:
Given parameters:
Height of lift = 10m
Mass = 22kg
Unknown:
Work done by the machine = ?
Solution:
Work done is the force applied to move a body through a certain distance.
So;
Work done = Force x distance
Here;
Work done = mass x acceleration due to gravity x height
Work done = 22 x 9.8 x 10 = 2156J
Answer:
20 seconds.
Explanation:
The following data were obtained from the question:
Distance = 10 m
Speed = 0.5 m/s
Time =...?
The speed of an object is simply defined as the distance travelled by the object per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can obtain the time taken for the ball to travel a distance of 10 m as shown below:
Distance = 10 m
Speed = 0.5 m/s
Time =...?
Speed = Distance /time
0.5 = 10/time
Cross multiply
0.5 × time = 10
Divide both side by 0.5
Time = 10/0.5
Time = 20 secs.
Therefore, it will take 20 seconds for the ball to travel a distance of 10 m.
Answer:
0.050 m
Explanation:
The strength of the magnetic field produced by a current-carrying wire is given by
where
is the vacuum permeability
I is the current in the wire
r is the distance from the wire
And the magnetic field around the wire forms concentric circles, and it is tangential to the circles.
In this problem, we have:
(current in the wire)
(strength of magnetic field)
Solving for r, we find the distance from the wire:
Approximately 150-200 species.
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2