Answer:
D I think I might be wrong its been a while scense I did something like that
Answer:
10042.6 ohm
Explanation:
f = 10 kHz = 10000 Hz, L = 36 mH = 0.036 H, R = 10 kilo Ohm = 10000 ohm
C = 5 nF = 5 x 10^-9 F
XL = 2 x π x f x L
XL = 2 x 3.14 x 10000 x 0.036 = 2260.8 ohm
Xc = 1 / ( 2 x π x f x C) = 1 / ( 2 x 3.14 x 10000 x 5 x 10^-9)
Xc = 3184.7 ohm
Total impedance is Z.
Z^2 = R^2 + (XL - Xc)^2
Z^2 = 10000^2 + ( 2260.8 - 3184.7 )^2
Z = 10042.6 ohm
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
The magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
<h3>What is angular momentum.?</h3>
The rotational analog of linear momentum is angular momentum also known as moment of momentum or rotational momentum.
It is significant in physics because it is a conserved quantity. the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
The magnitude of the angular momentum of the two-satellite system is best represented as;
L=∑mvr
L=m₁v₁r₁-m₂v₂r₂
Hence, the magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
To learn more about the angular momentum, refer to the link;
brainly.com/question/15104254
#SPJ4
Answer:
5558643.69 N
Explanation:
F = Force
v = Velocity = 31.5 knots
Converting to m/s
Power is given by
The forward force is exerted on the ship at this highest attainable speed is 5558643.69 N