Answer:
Torque, 
Explanation:
It is given that,
Force acting on the particle, 
Position of the particle,
We need to find the torque on the particle about the origin. It is equal to the cross product of position and the force. Its formula is given by :
The cross product of vectors is given by :

or

So, the torque on the particle about the origin
. Hence, this is the required solution.
It will be launched in the direction it was going in when the centripetal force is removed
F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
Answer: D. the distance between the highest points of consecutive waves
Explanation:
The wavelength of a wave is defined as the <em>distance traveled by a periodic perturbation that propagates through a medium in a given time interval</em>. It is usually represented by
and can be calculated if the frequency of the wave is known, since there is an inverse relationship between both.
In the specific case of a periodic sine wave (which is the way in which a wave is usually represented graphically) the wavelength can be determined as the distance between two consecutive maxima of the disturbance.
Therefore, the correct option is D.
I think it’s action force please tell me if I’m wrong I hope you have a wonderful day