1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
4 years ago
12

Verify tan(α+β) = [tan(α)+tan(β)] / [1 + tan(α)tan(β)]

Mathematics
1 answer:
mr Goodwill [35]4 years ago
5 0

Answer:

Proved

Step-by-step explanation:

To Prove: tan(\alpha+\beta) =\dfrac{tan(\alpha)+tan(\beta)}{1 + tan(\alpha)tan(\beta)}

Proof:

Now: tan \theta =\dfrac{sin\theta }{cos \theta}

Therefore:

tan (\alpha+\beta)=\dfrac{ sin (\alpha+\beta)}{cos (\alpha+\beta) }

Applying these angle sum formula

sin (\alpha+\beta)=sin \alpha cos \alpha + sin \beta cos \beta\\cos (\alpha+\beta)=cos \alpha cos \beta - sin \alpha sin \beta

tan (\alpha+\beta)=\dfrac{ sin \alpha cos \alpha + sin \beta cos \beta}{cos \alpha cos \beta - sin \alpha sin \beta }

Divide all through by cos \alpha cos \beta

tan (\alpha+\beta)=\dfrac{ (sin \alpha cos \alpha)/(cos \alpha cos \beta) + (sin \beta cos \beta)/(cos \alpha cos \beta)}{(cos \alpha cos \beta)/(cos \alpha cos \beta) - (sin \alpha sin \beta)/(cos \alpha cos \beta) }\\\\tan (\alpha+\beta)=\dfrac{\frac{sin \alpha}{cos \alpha}+\frac{sin \beta}{cos \beta} }{1-tan \alpha tan \beta} \\$Therefore:\\\\tan (\alpha+\beta)=\dfrac{tan \alpha+tan \beta}{1-tan \alpha tan \beta}

=sin \alpha cos \beta + cos \alpha sin \beta/cos \alpha cos \beta/cos \alpha cos \beta- sin \alpha sin \beta/cos \alpha cos \beta  

=sin \alpha/cos \alpha + sin \beta/cos \beta/1-tan \alpha tan \beta  

=tan A + tan B/1-tan A tan B

You might be interested in
PLEASE HELP! THiS IS DUE!!!!!!!! I Will MAKE BRAINlST
9966 [12]

Answer:

\mathrm{26.\qua\:H\quad\:2 \dfrac{ 1  }{ 4  }\qua\:mi}

\mathrm{27.\qua\:D\quad\: 9\dfrac{ 1  }{ 8  }\qua\:lb}

\mathrm{28.\qua\:H\quad\:14.6}

\mathrm{29.\qua\:C\quad\:25\%}

\mathrm{30.\qua\:J\quad\:33.912\qua\ ft^{3} }

Step-by-step explanation:

26.

\mathrm{\dfrac{ 3  }{ 4  }\:mile\:per\:one\:hour}

\mathrm{To\:find\:how\:far\:Jet's\:cousin\:can\:walk\:in\:3\:hours\:,\:we\:multiply\:\dfrac{ 3  }{ 4  }\:by\:3}

3 \times   \dfrac{ 3  }{ 4  }

\mathrm{Express\: 3 \times   \left(  \dfrac{ 3  }{ 4  }    \right)\:as\:a\:singe\:fraction}

\dfrac{ 3 \times  3  }{ 4  }

\mathrm{Multiply\:3\:and\:3\:to\:get\:9}

\dfrac{ 9  }{ 4  }

\mathrm{Convert\:\dfrac{ 9  }{ 4  }\:to\:a\:mixed\:number}

2 \dfrac{ 1  }{ 4  }

\mathrm{So\:she\:can\:walk\:2 \dfrac{ 1  }{ 4  }\:miles\:in\:3\:hours}

27.

\mathrm{Since\:we\:want\:to\:find\:how\:many\:pounds\:both\:pumpkins\:weigh\:together,\:we\:have\:to\:add.}

5 \dfrac{ 3  }{ 4  }  +3 \dfrac{ 3  }{ 8  }

\mathrm{Turn\:both\:mixed\:fractions\:into\:improper\:fractions}

\dfrac{ 23  }{ 4  }  + \dfrac{ 27  }{ 8  }

\mathrm{Least\:common\:multiple\:of\:4\:and\:8\:is\:8}

\mathrm{Multiples\:of\:4}:\quad4,8,12,16,20

\mathrm{Multiples\:of\:8}:\quad8,16,24,32,40

\dfrac{ 23  }{ 4  }  + \dfrac{ 27  }{ 8  }

\mathrm{Convert\:  \dfrac{ 23  }{ 4  }   \:and\:  \dfrac{ 27  }{ 8  }   \:to\:fractions\:with\:denominator\:8}

\dfrac{ 23 \times  2  }{ 4 \times  2  }  + \dfrac{ 27  }{ 8  }

\mathrm{Simplify}

\dfrac{ 46  }{ 8  }  + \dfrac{ 27  }{ 8  }

\mathrm{Since\:  \dfrac{ 46  }{ 8  }\:and\:\dfrac{ 27  }{ 8  }\:have\:the\:same\:denominators,\:add\:them\:by\:adding\:their\:numerators}

\dfrac{ 46+27  }{ 8  }

\mathrm{Add\:46\:and\:27\:to\:get\:73}

\dfrac{ 73  }{ 8  }

\mathrm{Convert\:\dfrac{ 73  }{ 8  }\:to\:a\:mixed\:number}

9 \dfrac{ 1  }{ 8  }

\mathrm{Both\:pumpkins\:weighed\:9 \dfrac{ 1  }{ 8  }\:pounds\:all\:together}

28.

Since the question is asking us "How many more miles did Alyce travel than Jason", we have to subtract the miles Jason traveled from the miles Alyce traveled.

29.193-14.593

\mathrm{Subtract\:14.593\:from\:29.193\:to\:get\:14.6}

14.6

\mathrm{Alyce\:traveled\:14.6\:more\:miles\:than\:Jason}

29.

For this question, we must find "10 is what percent of 40"

The equation for this is:

\dfrac{ 10  }{ 40  }   \times  100

\mathrm{Simplify\:  \dfrac{ 10  }{ 40  }   \:to\:  \dfrac{ 1  }{ 4  }   }

\dfrac{ 1  }{ 4  }   \times  100

\mathrm{Multiply\:  \dfrac{ 1  }{ 4  }\:and\:100\:to\:get\:  \dfrac{ 100  }{ 4  }   }

\dfrac{ 100  }{ 4  }

\mathrm{Divide\:100\:by\:4\:to\:get\:25}

25

\mathrm{So\:she\:recieved\:a\:25\%\:off\:discount}

To check if this is correct, you can do the following below:

What is 25 percent (%) off $40?

Use the formula and replace the given values:

Amount Saved = Original Price x Discount % / 100. So,

Amount Saved = 40 x 25 / 100

Amount Saved = 1000 / 100

Amount Saved = $10

In other words, a 25% discount for an item with original price of $40 is equal to $10

 

30.

Given that the calculated volume of the drum is 37.68 ft³ and it is 90% full, it implies that the current volume is calculated as:

\mathrm{Current\:compacity} =  90 \%   \times  37.68

\mathrm{Turn\:90\%\:into\:a\:decimal}

\mathrm{Current\:compacity} =  0.9   \times  37.68

\mathrm{Multiply\:0.9\:and\:37.68\:to\:get\:33.912}

33.912

\mathrm{The\:current\:compacity\:of\:the\:drum\:is\:33.912\:ft^{3} }

8 0
2 years ago
Mrs. Jones decided to buy some pencils for her class. She bought 5 packages of pencils, and each package contained 42 pencils. T
Elena L [17]
Each student would get 15pencils
6 0
3 years ago
Look at the attached photo
Papessa [141]

Answer:

Step-by-step explanation:

radius of the circle=12 cm / 2=6 cm

Area of the square=side²=(12 cm)²=144 cm²

Area of the circle=πr²=(3.142)(6 cm)²≈(3.142)*36 cm²≈113.112 cm²

Area of the four  sides between the square and the circle=

=Area of the square - area of the circle=144 cm²-113.112 cm²=30.888 cm²

shaded area =30.888 cm²/4=7.722 cm²

Answer =7.722 cm²

6 0
3 years ago
I just need the answer bru why’s it gotta Make write 20 words‍♂️ this is dumb as hell bru‍♂️
TiliK225 [7]

Answer:

11

Step-by-step explanation:

W^7/W^-2=W^7+2=W^9 ( when divide subtract the exponent (7-(-2))

W^?/W² = W^?-2

W^9=W^(?-2)

9=?-2

?=11

W^7/W^-2 = W^11/W²

5 0
3 years ago
Find c. Round to the nearest tenth
sergeinik [125]

Answer:

c = <u>0.5 cm</u>

Step-by-step explanation:

Using the Sine rule in the triangle, then

=  ( cross- multiply )

c × sin105° = 2 × sin15° ( divide both sides by sin105°

c =  ≈ 0.5 cm ( to the nearest tenth )

8 0
3 years ago
Other questions:
  • What is -2 and 2/3 devided by 3/8 (the number/number means its a fraction)
    15·1 answer
  • Write 9,150,000 in scientific notation
    12·2 answers
  • Julie spends 3/4 hour studying on Monday and 1/6 hour studying on Tuesday. How many hours does Julie study on the two days? (A 1
    8·1 answer
  • The cost to a store for a box of cereal is $2.50. The store is selling the box of cereal for $3.50. What is the percent of marku
    6·2 answers
  • What is the area of a rectangular driveway measuring 20 feet long &amp; 15 feet wide​
    11·2 answers
  • Need help with question 5. Anything is appreciated :))
    9·2 answers
  • 1. The radius equals<br> units<br> 2. The diameter equals<br> units
    14·1 answer
  • Solve for w. -34=-6+w/4
    12·2 answers
  • Solve for y:<br> 6=2(y+2)
    9·2 answers
  • Match the information on the left with the appropriate equation on the right.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!