
Solve the following using Substitution method
2x – 5y = -13
3x + 4y = 15


- To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.

- Choose one of the equations and solve it for x by isolating x on the left-hand side of the equal sign. I'm choosing the 1st equation for now.

- Add 5y to both sides of the equation.


- Multiply
times 5y - 13.

- Substitute
for x in the other equation, 3x + 4y = 15.

- Multiply 3 times
.

- Add
to 4y.

- Add
to both sides of the equation.

- Divide both sides of the equation by 23/2, which is the same as multiplying both sides by the reciprocal of the fraction.

- Substitute 3 for y in
. Because the resulting equation contains only one variable, you can solve for x directly.


- Add
to
by finding a common denominator and adding the numerators. Then reduce the fraction to its lowest terms if possible.

- The system is now solved. The value of x & y will be 1 & 3 respectively.

Answer:
25%
Step-by-step explanation:
George is 33
% (
%) richer than Pete. Let Pete's percentage of wealth be 100%.
Thus George percentage of wealth = 100% +
%
=
%
= 133
%
Pete's percent poorer than George can be determined by;
=
÷
× 100
=
×
×100
= 0.25 × 100
= 25%
Pete is 25% poorer than George.
Answer:
2 real solutions
Step-by-step explanation:
We can use the determinant, which says that for a quadratic of the form ax² + bx + c, we can determine what kind of solutions it has by looking at the determinant of the form:
b² - 4ac
If b² - 4ac > 0, then there are 2 real solutions. If b² - 4ac = 0, then there is 1 real solution. If b² - 4ac < 0, then there are 2 imaginary solutions.
Here, a = 6, b = -20, and c = 1. So, plug these into the determinant formula:
b² - 4ac
(-20)² - 4 * 6 * 1 = 400 - 24 = 376
Since 376 is clearly greater than 0, we know this quadratic has 2 real solutions.
<em>~ an aesthetics lover</em>
Answer:
<h2>
y = 5.6</h2>
Step-by-step explanation:
From Thales' theorem:

= x^2 ( x+3 ) (x+3)
= set equal to 0
X^2= 0
X=0
X+3=0
X=-3
Answer is -3 and 0