The correct question is
<span>
Penelope determined the solutions of the quadratic function by completing the square.f(x) = 4x² + 8x + 1
–1 = 4x² + 8x
–1 = 4(x² + 2x)
–1 + 1 = 4(x² + 2x + 1)
0 = 4(x + 2)²
0 = (x + 2)²
0 = x + 2
–2 = x
What error did Penelope make in her work?
we have that
</span>f(x) = 4x² + 8x + 1
to find the solutions of the quadratic function
let
f(x)=0
4x² + 8x + 1=0
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
(4x² + 8x)=-1
Factor the
leading coefficient
4*(x² + 2x)=-1
Complete the square Remember to balance the equation
by adding the same constants to each side.
4*(x² + 2x+1)=-1+4 --------> ( added 4 to both sides)
Rewrite as perfect squares
4*(x+1)²=3
(x+1)²=3/4--------> (+/-)[x+1]=√3/2
(+)[x+1]=√3/2---> x1=(√3/2)-1----> x1=(√3-2)/2
(-)[x+1]=√3/2----> x2=(-2-√3)/2
therefore
the answer is
<span>
Penelope should have added 4 to both sides instead of adding 1.</span>
Rational Number are set of numbers that can be written as a/b where a and b are integers, but b is not equal to 0; an integer or a fraction; for example: 6 can be expressed as 6/1 and 0.5 can be expressed as 1/2.
17. Area of triangle: 1/2bh
1/2 * 12 * 15
1/2 * 180
=90 cm^2
18. Area of trapezoid: 1/2 h (b1 + b2)
1/2 * 8 ( 12 + 15.4)
4 * 27.4
= 109.6 cm^2
{2, 5, 3, 1, 0, 3, 7, 2, 2} is the data set. We can find this by finding <span>relative frequency of 3 = 2/9 = 0.22 and then 150 times .22 = 33 units</span>
1583 because that’s the year that the they created that math problem