I can’t the picture can you post a other one
Answer:
a) there is s such that <u>r>s</u> and s is <u>positive</u>
b) For any <u>r>0</u> , <u>there exists s>0</u> such that s<r
Step-by-step explanation:
a) We are given a positive real number r. We need to wite that there is a positive real number that is smaller. Call that number s. Then r>s (this is equivalent to s<r, s is smaller than r) and s is positive (or s>0 if you prefer). We fill in the blanks using the bold words.
b) The last part claims that s<r, that is, s is smaller than r. We know that this must happen for all posirive real numbers r, that is, for any r>0, there is some positive s such that s<r. In other words, there exists s>0 such that s<r.
Y=10
explanation:
-4•2= -8
2•4=8
-8+8=0
y=10
⚘<em>K</em><em>i</em><em>n</em><em>d</em><em>l</em><em>y</em><em> </em><em>r</em><em>e</em><em>f</em><em>e</em><em>r</em><em> </em><em>t</em><em>o</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>a</em><em>t</em><em>t</em><em>a</em><em>c</em><em>h</em><em>m</em><em>e</em><em>n</em><em>t</em><em>s</em><em> </em><em>f</em><em>o</em><em>r</em><em> </em><em>c</em><em>o</em><em>m</em><em>p</em><em>l</em><em>e</em><em>t</em><em>e</em><em> </em><em>s</em><em>o</em><em>l</em><em>u</em><em>t</em><em>i</em><em>o</em><em>n</em><em>s</em><em>!</em><em>!</em><em>~</em>
Answer:

Step-by-step explanation:

Add the fractions since the denominators are the same.


Simplifying the fraction.

