A) Rubber stops charges from flowing. This protects people by stopping electricity from flowing.
Explanation:
The statement that best describes the point of wrapping rubber around the copper wire is that the rubber stops charges from flowing. This prevents people from getting electrical shocks by stopping the flow of electricity.
- A rubber is an insulator.
- Insulators are substances that prevents the flow of electricity.
- The lack free mobile electrons or ions that makes them conductors.
- When they are wrapped round a conductor such as copper wire, they will halt the flow of charges.
- Copper is a conductor of both heat and electricity. It has free mobile electrons.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
Answer:
write the name of any five districts of nepal
Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Explanation:What is centripetal acceleration?
Can an object accelerate if it's moving with constant speed? Yup! Many people find this counter-intuitive at first because they forget that changes in the direction of motion of an object—even if the object is maintaining a constant speed—still count as acceleration.
Acceleration is a change in velocity, either in its magnitude—i.e., speed—or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the speed might be constant. You experience this acceleration yourself when you turn a corner in your car—if you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion. What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we'll examine the direction and magnitude of that acceleration.
The figure below shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation—the center of the circular path. This direction is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration
a
c
a
c
a, start subscript, c, end subscript; centripetal means “toward the center” or “center seeking”.