Answer:
It involves all three methods as the handle of the pot is conducting heat via touching the pan which gets it's heat from the burner that is radiating heat to the entire pan through waves of heat from the burner. There is then convection as the heat is being transferred as the liquids temperature changes.
This should be good if I remember it correctly which I hope so much I do.
Answer: Geologists study rocks to find clues to Earth's formation. Evidence from rocks and fossils allows us to understand the evolution of life on Earth.
Answer:
3.6 m/s
Explanation:
From the law of conservation of momentum,
Total momentum before jump = Total momentum after jump
<em>Note: Before Dan jump off the skateboard, they where both moving with the same velocity</em>
u(m+m') = mv+m'v'................. Equation 1
Where m = Dan's mass, m' = mass of the skateboard, u = common velocity before the jump, v = Dan's final velocity, v' = The final velocity of the skateboard.
make v the subject of the equation
v = [u(m+m')-m'v')]/m.............. Equation 2
Given: u = 4.0 m/s, m = 50 kg, m' = 5 kg, v' = 8 m/s
Substitute into equation 2
v = [4(50+5)-(5×8)]/50
v = (220-40)/50
v = 180/50
v = 3.6 m/s
Answer:
180^2 + 390^2 = force ^2 (Pythagoras) root of force^2 = 429.5N approx resultant force Acceleration = Force/Mass 429.5/270 = 1.5907 ms^-2 in a Southwesterly direction.
Explanation:
Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m