i believe i could be wrong but i think its kinetic energy.
Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
The potential energy will be 1.46*10^-4J.
To find the answer, we have to know about the torque acting on a current loop in a uniform magnetic field.
<h3>How to find the potential energy of the loop?</h3>
- We have the expression for torque acting on a current loop in a uniform magnetic field as,

where; M is the magnetic dipole moment, B is the magnetic field , and theta is the angle between M and B.
- As we know that, the torque is equal to force times the perpendicular distance. Thus, it is equivalent to the work done. This work is stored as the potential energy in the loop.
- Thus, the potential energy will be,

Thus, we can conclude that, the potential energy will be 1.46*10^-4J.
Learn more about the torque here:
brainly.com/question/27949876
#SPJ4
Electromagnets are used in home appliances quite regularly and are used even in simple home appliances. Common home appliances that use electromagnets are toasters, printers, and microwave ovens. Electromagnets are a certain type of magnet that does not function unless an electrical current flows through it. These appliances create the magnetic field by flowing electricity through certain parts of the appliance.