A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from reversible process in thermodynamics.
Weak acids and bases undertake reversible reactions. For example, carbonic acid: H2CO3 (l) + H2O(l) ⇌ HCO−3 (aq) + H3O+(aq).
The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction.[2] So, when the free energy change is large (more than about 30 kJ mol−1), then the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although in reality small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction
To know what type of transport occurred the lab and collected data are needed. As they are not present an explanation of the different transport's types, will be given.
Water, proteins, ions, and molecules of different sizes can pass through the cell membrane using different types of transports. The transport that each molecule uses depends on the concentration, size, and polarity.
We can classify the types of transport as active and passive.
Passive transport is the one that does not need energy to happen since the molecules move from a place of high concentration to a one of lower concentration. In this group, we have:
- Simple diffusion: small molecules in high concentration on one side of the membrane; move to the other side due to the difference in concentration.
- Osmosis: water passes through the membrane from a place of low concentration of molecules to one of high concentration. Water moves inside or outside the cell to valance the concentration of solutes on both sides of the membrane.
- Facilitated diffusion: uses proteins to transport large molecules, ions, or hydrophobic molecules from one side to the other. In this type of transport, we have proteins that form channels so those hydrophobic molecules can pass through the lipid membrane, and carrier proteins, which binds to a specific molecule changing their shape and transporting the molecule.
Active transport needs the<em> energy</em> to transport molecules; since it goes against the gradient's concentration. In this group, we have:
- Sodium-Potassium pump: uses ATP to move sodium outside the cell and potassium to the inside. The ions with this transport go to where they are most concentrated.
In conclusion, there are different types of transport; they depend on the concentration or type of molecule. To find out what mechanism of transport occurred in the lab, look at the components of the experiment and analyze which of these transports could be present.
Learn more at:
brainly.com/question/18565254
The nutrients in the soil will increase resulting in healthier crops.
You don't have to wait for the crops to grow on their own
Answer:
Secretion of the neurotransmitter serotonin, which is a water-soluble amine molecule
Explanation:
Exocytosis is defined as the process where cell transports secretary products which are packaged in transport vesicles such as antibodies, peptide hormones, secretory proteins, and enzymes with the help of cytoplasm to the plasma membrane.
Some example of exocytosis are:
1) Neurotransmitters secrets from nerve cells.
2) Antigens which helps to stimulate the immune response.
3) Proteins of the plasma membrane.