The frequency of the pendulum is independent of the mass on the end. (c)
This means that it doesn't matter if you hang a piece of spaghetti or a school bus from the bottom end. If there is no air resistance, and no friction at the top end, and the string has no mass, then the time it takes the pendulum to swing from one side to the other <u><em>only</em></u> depends on the <u><em>length</em></u> of the string.
Explanation:
it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing.
When an object is moving with constant velocity, it does not change direction nor speed and therefore is represented as a straight line when graphed as distance over time.
I'm not sure I completely understand the expression you want evaluated.
It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.
An object need to move in a straight line in the same direction in equal intervals of time in order for total distance traveled and displacement to be equal.
C. located in front of the lens