B. Strong nuclear
Because the strong nuclear force is the strongest at short distances, it dominates over the other forces and the two protons become bound, forming a helium nucleus (typically a neutron is also needed to keep the helium nucleus stable).
Answer:
Explanation:
let t be time since the second diamond is released
a) y = ½g(t + 1)²
b) y' = ½g(t)²
c)
25 = ½g(t + 1)² - ½gt²
25 = ½g(t² + 2t + 1) - ½gt²
25 = ½gt² + gt + ½g - ½gt²
25 = g(t + ½)
t + ½ = 25 / g
t = (25 / g) - ½
t = (25 / 9.8) - ½
t = 2.05102... ≈ 2.1 s
Answer:
The position of the first dark spot on the positive side of the central maximum is 1.26 mm.
Explanation:
Given that,
Wavelength of light is 633 nm.
Slit width, d = 0.5 mm
The diffraction pattern forms on a screen 1 m away from the slit. We need to find the position of the first dark spot on the positive side of the central maximum.
For destructive interference :

Y is the distance of the minima from central maximum
Here, n = 1

So, the position of the first dark spot on the positive side of the central maximum is 1.26 mm.