The given elements put into an equation using their symbols are as follows:
Pb +

=

+ Ag
Since there are 2 Pb on the right side of the equation, you would change the coefficient of Pb on the left side to 2:
2Pb +

=

+ Ag
Since there are 2 Acetate on the right side of the equation, you would change the coefficient of Silver Acetate on the left side to 2:
2Pb +

=

+ Ag
Now there are 2 Silver on the left side, so you change the coefficient of Silver on the right side to 2:
2Pb +

=

+ 2Ag
That is your final equation
The coefficients are 2 + 2 = 1 + 2
Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

I would personally say C. Energy only...
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2