OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml
</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100
</span>therefore:
V1 = 20 ml
Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.
Answer:
The difference between the density of the ocean crust and the continental crust is the fact that the ocean crust is denser than the continental crust. Meaning, the continental crust is likely to push over the oceanic crust considering it has less dense.
Explanation:
I hope this helps, the last time I learned this was in 5th grade and I am i currently in the 11th grade....
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
<span>
You can do it on the icing of roads, reverse osmosis for desalination of water, dissolved CO2 in soda cans, osmotic pressure involving blood vessels and IV solutions, etc.</span>
Answer:
This is an oxidation-reduction (redox) reaction:
2 Ni0 - 4 e- → 2 NiII
(oxidation)
2 O0 + 4 e- → 2 O-II
(reduction)
Ni is a reducing agent, O2 is an oxidizing agent.