The force required is 319 N
Explanation:
The force of static friction is a force that acts an object on a surface, when this object is pushed by another force to put it in motion. The direction of the force of friction is opposite to the direction of the force of push, and its value increases as the force of push increases, up to a maximum value given by:

where
is the coefficient of friction
W is the weight of the object
Therefore, in order to put the object in motion, the force applied must be greater than this value.
For the pile of leaves in this problem, we have:
(coefficient of friction)
(weight of the leaves)
Substituting, we find:

Learn more about force of friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Answer:
The answer is 138.5
Explanation:
STEP 1:
The inductance per unit length of a coaxial transmission line is
L′=L<em>/ </em>I
=Ø/H
=μoI/2π In (b/a)
In this a is the radius of inner conductor
b is the radius of outer conductor
I is the coaxial transmission
μ is the magnetic permeability
Since the transmission of the charge exists in air, the value of the relative permeability is μr= I and permeability of free space is μo= 4π x 10-7 H/m . So the magnetic permeability will be
μ = μoμ r
μ =μ o(I) 4π x 10-7 H/m
L′= μoI/2π In (b/a)
= (4π x 10-7 ) (2)/2π In (10/5)
=2.77 x 10-7 H
STEP 2:
Obtain the magnetic energy stores in the magnetic field H of a volume of the coaxial transmission line containing a material with permeability μ, by using the formula given below:
Wm= 1/2 LI^2
= 1/2 (2.77x 10^-7 I^2
= 138.5 X 10^-9 I^2 J
Now we will simplify the equation
Wm= 185.5<em>I</em>^2 nJ
So, the magnetic energy stored in insulating medium is 185.5<em>I</em>^2 nJ
UMUC. this is for the blank answer.
Answer:
The balloon expands in the number of particles per cubic centimeter decreases. This happens because as it expands there is a decrease in the density of area. The Dead Sea is a solution that is so dense that you easily float on it.
This statement is true. Early earth was much cooler than it is today.
This is because the pollution as well as the population number was very small compared to nowadays population and pollution.
The pollution mainly is causing a decay in the ozone layer which protects the earth from uv rays. Thus, more of these rays enter the atmosphere and increase the temperature.
The increase in population along with the decrease in green areas leads to the increase in the percentage of carbon dioxide in the atmosphere, which again leads to an increase in the temperature.