At the present time, the only way we know of that light can get shifted
toward the blue end of the spectrum is the Doppler effect ... wavelengths
appear shorter than they should be when the source is moving toward us.
IF that's true in the case of the Andromeda galaxy, it means the galaxy is
moving toward us.
We use the same reasoning to conclude that all the galaxies whose light is red-shifted are moving away from us. That includes the vast majority of all galaxies that we can see, and it strongly supports the theory of the big bang
and the expanding universe.
If somebody ever comes along and discovers a DIFFERENT way that light
can get shifted to new, longer or shorter wavelengths, then pretty much all
of modern Cosmology will be out the window. There's a lot riding on the
Doppler effect !
The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three. Option B is correct.
<h3 /><h3>How do you calculate the volume of a cube?</h3>
Assume the side length of the cube under consideration is L units. The volume of the cube is then equal to L³ cubic units.
The volume of a cube is;
V = L³
Ubes have equal-length sides. The quickest technique to calculate the volume of a cube-shaped table is to use a ruler to measure one side, then multiply that figure by three.
Hence option B is correct.
To learn more about the volume of a cube refer
brainly.com/question/26136041
#SPJ1
Answer:
Increases
Increases
Increases
Explanation:
I don't know if you answered your own question but I'll just answer this for others confused ahh
Answer:
it depends on a person's own weight
Answer:
Boyle's Law

Explanation:
Given that:
<u><em>initially:</em></u>
pressure of gas, 
volume of gas, 
<em><u>finally:</u></em>
pressure of gas, 
volume of gas, 
<u>To solve for final volume</u>
<em>According to Avogadro’s law the volume of an ideal gas is directly proportional to the no. of moles of the gas under a constant temperature and pressure.</em>
<em>According to the Charles' law, at constant pressure the volume of a given mass of an ideal gas is directly proportional to its temperature.</em>
But here we have a change in the pressure of the Gas so we cannot apply Avogadro’s law and Charles' law.
Here nothing is said about the temperature, so we consider the Boyle's Law which states that <em>at constant temperature the volume of a given mass of an ideal gas is inversely proportional to its pressure.</em>
Mathematically:


